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Abstract
Graphs are versatile data structures that model complex relationships in diverse fields, including
social networks, biological systems, recommendation engines, and knowledge graphs. However,
the flexibility of the graph data model poses challenges for applying machine learning techniques,
as it lacks the constraints found in other data formats like images or text. In recent years,
Graph Neural Networks (GNNs) have emerged as a promising approach for analyzing graphs,
demonstrating exceptional empirical performance and versatility in various tasks and domains.
Despite extensive studies on their theoretical expressiveness, a comprehensive understanding of
the representations learned by GNNs and the factors contributing to their empirical success
remains limited.

This thesis addresses the need for deeper insights into the representations learned by GNNs.
To achieve this, we introduce a novel framework called 1-WL+NN, which combines the Weisfeiler-
Leman algorithm (1-WL) with a feedforward neural network. The 1-WL+NN framework serves
as a powerful tool to study GNNs.

In this thesis, we prove the equivalence between the 1-WL+NN framework and GNNs in
terms of computability, enabling us to explore GNNs by conducting experiments on a variety
of datasets for both 1-WL+NN and GNN models. Our results show that 1-WL+NN models
achieve comparable performance to GNN models and even outperform them on certain datasets.
However, 1-WL+NN models tend to exhibit more pronounced overfitting, attributed to the
expressive nature of the 1-WL algorithm. Interestingly, both 1-WL+NN and GNN models
primarily rely on the information computed by a single iteration of the 1-WL algorithm,
suggesting a trade-off between expressiveness and efficiency. Additionally, graph representations
inferred by GNN models demonstrate better linear separability and clustering compared to
1-WL+NN models.

In conclusion, this thesis contributes to understanding GNN representations and highlights
the potential of the 1-WL+NN framework as an analysis tool. The empirical insights gained
from our experiments shed light on the inner workings of GNN models, paving the way for
further advancements in graph learning research. By better understanding the representations
learned by GNNs, we can enhance their performance and applicability in real-world scenarios
across various domains.
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1. Introduction

This thesis aims to provide insights into the representations learned by Graph Neural Networks
(GNNs). In this chapter, we will discuss the significance of graphs and how GNNs play a crucial
role in analyzing them. We will present the motivation behind this work, the methods employed
to gain insights, and an overview of the structure of this thesis.

1.1. Motivation
Graphs are ubiquitous in various fields of life. Despite not always being explicitly identified as
such, the graph data model’s flexibility and simplicity make it an effective tool for modeling a
diverse range of data. Examples of graph modeling applications include unexpected instances,
such as modeling text or images as a graph, as well as more complex instances like chemical
molecules, citation networks, or connectivity encodings of the World Wide Web Morris et al.
[2020], Scarselli et al. [2009].

Although machine learning has achieved remarkable success with image classification (e.g.,
Zoph et al. [2018], He et al. [2016]) and text generation (e.g., Radford et al. [2019], Brown et al.
[2020]) in the last decade, the lack of a significant breakthrough in machine learning for graphs
can be attributed to the graph data model’s inherent flexibility and simplicity. While, for
example, an image classifier constrains its input data to be a grid-like image or a text generator
expects its input to be a linear sequence of words, machine learning models working on graphs
cannot leverage any constraints on the format or size of their input graphs without limiting
their generality.

To put this flexibility of the graph data model into perspective and give an idea of how
ubiquitous graphs are in various fields, we refer back to the examples of image classifiers and
text generators and demonstrate how seemingly natural the graph data model can encode their
input data. For example, images can be encoded by a graph, such that each pixel of the image
corresponds to a node in the graph holding its color value, and each node is connected to its
neighboring pixel nodes. Similarly, for sequential data like text files, one can encode a directed
graph where each word in this file is represented as a node with the word as a feature and
connected outgoingly to the next following word. See Figure 1.1 for an illustrative example of
these encodings.

In recent years, a significant amount of research has been conducted to investigate Graph
Neural Networks (GNNs). Among the most promising approaches are those utilizing the message-
passing architecture, which was introduced by Scarselli et al. [2009] and Gilmer et al. [2017].
Empirically, this framework has demonstrated strong performance across various applications
Kipf and Welling [2017], Hamilton et al. [2017], Xu et al. [2019]. However, its expressiveness is
limited, as has been proven by the works of Morris et al. [2019], as well as Xu et al. [2019]. These
works establish a connection to the Weisfeiler-Leman1 algorithm (1-WL), originally proposed

1Based on https://www.iti.zcu.cz/wl2018/pdf/leman.pdf, we will use the spelling “Leman” here, as requested
by A. Leman, the co-inventor of the algorithm.

1

https://www.iti.zcu.cz/wl2018/pdf/leman.pdf


(a) Graph Encoding of an Image2

C N

N

N

N
C

C

C

C

C

C

C

O

O

(b) Graph Encoding of a Molecule3

This is an example.

Example.txt

This is an example.
   

(c) Graph Encoding of a Text File.

Figure 1.1.: An overview of three examples of how graphs can be used to encode information
across different domains. For each example, the conventional domain-specific
encodings are visualized on the left, while on the right, we showcase how a graph
can encode the same information. Note that these examples are just a sample; in
actual practice, more detailed encodings are usually utilized to capture additional
information.4

by Weisfeiler and Leman [1968] as a simple heuristic for the graph isomorphism problem. In
particular, it has been proven that a GNN based on the message-passing architecture can, at
most, be as good as the 1-WL algorithm in distinguishing non-isomorphic graphs. Furthermore,
the 1-WL method demonstrates numerous similarities with the fundamental workings of the
GNN architecture. It is, therefore, commonly believed that both methods are, to some extent,
equivalent in their capacity to capture information in a graph.

Despite the remarkable empirical performance of GNNs, particularly compared to conventional
graph kernel functions Morris et al. [2020], and the theoretical understanding of their ability
to distinguish non-isomorphic graphs, there remains a limited understanding of the learned
representations that drive this empirical success. This work aims to delve into these representations,
seeking deeper insights into the factors contributing to the efficacy of GNNs.

1.2. Methodology and Contribution
In this work, we present a novel framework called 1-WL+NN, which combines the 1-WL
algorithm with a feedforward neural network to create a trainable framework suitable for
various graph-related tasks, such as graph classification and node regression.

The key characteristic of this novel framework lies in its distinct learning behavior compared
to GNNs. A 1-WL+NN model first computes a maximally informative representation of its input
graph using the 1-WL algorithm. Subsequently, a feedforward neural network is employed to
extract essential information from this representation to make accurate predictions. In contrast,
a GNN model typically starts by learning to compute effective graph representations, further

2The image of a dog is from the CIFAR-10 collection made available by Krizhevsky et al. [2009].
3The illustration of the skeletal formula of caffeine is taken from https://commons.wikimedia.org.
4All graphics were created using the free open source platform https://www.draw.io.
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processes these representations, and finally makes a decision. The fundamental difference
between the 1-WL+NN and GNN lies in their initial graph representations. The 1-WL+NN is
provided with an already maximally informative representation obtained through the 1-WL
algorithm, which captures the graph’s structural and label information. In contrast, a GNN
must first learn to compute an effective representation during training.

Our work establishes the theoretical equivalence of both 1-WL+NN and GNN frameworks,
demonstrating that any function computed by a 1-WL+NN model can also be computed by
a GNN model and vice versa. This theoretical equivalence enables us to conduct tests on
1-WL+NN and GNN models in various domains. By comparing their performances, we gain a
better understanding of GNNs and their representations. In particular, we set out to investigate
and answer the following questions:

Q1 Can 1-WL+NN models achieve comparable performance to GNN models empirically?
Q2 Are there observable differences in the learning behavior between 1-WL+NN and GNN

models?
Q3 To what extent does the expressiveness of 1-WL+NN models in terms of distinguishing

non-isomorphic graphs contribute to their empirical performance, and do GNN models
leverage their theoretical ability to be equally expressive?

Q4 Is there a substantial difference in the graph representations computed by each model type?

By exploring these questions, we aim to gain insights into the capabilities and limitations of
GNNs and shed light on the effectiveness of the 1-WL+NN framework as a valuable tool for
studying GNNs.

1.3. Outline
For ease of readability, we split this work into two parts. The first part investigates and
establishes the theoretical equivalence between the frameworks of 1-WL+NN and GNNs, while
the second part presents our different experiments and their empirical results.

In detail, in Chapter 2, we will discuss related work, milestones in GNNs over the past decade,
essential properties of the 1-WL algorithm, and a subset of interesting connections between
GNNs and the 1-WL algorithm.

Afterward, we will start with Part I, which begins with Chapter 3. Here, we will introduce
formal definitions for both frameworks, as well as a set of notations we will use throughout the
theoretical part. Preceding, in Chapter 4, we will introduce and prove two theorems that each
present a connection between both frameworks and combined prove the equivalence of both
frameworks.

The second part is dedicated to our empirical experiments. We begin with Chapter 5,
explaining the experimental setup and our experiment choices. In detail, we will discuss the
choice of benchmarking datasets, GNN models, and 1-WL+NN models, along with an explanation
of our general testing procedure. In Chapter 6, we present the results of our experiments and
delve into further analyses of certain aspects of GNN and 1-WL+NN models. In particular, we
will investigate the representations computed by GNNs and try to infer common patterns that
occurred across multiple datasets. In the end, the thesis concludes with a final discussion in
Chapter 7, where we summarize our findings, address the limitations of this work, and offer
recommendations for future research.
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2. Background and Related Work

In this chapter, we will briefly introduce the foundation of our research by explaining the origins
of the two frameworks, mentioning important recent advances, and providing a brief overview
of the connections between them.

2.1. Weisfeiler-Leman Algorithm

The (1-dimensional) Weisfeiler-Leman algorithm (1-WL), proposed by Weisfeiler and Leman
[1968], was initially designed as a simple heuristic for the graph isomorphism problem, but due
to its interesting properties, its simplicity, and its good performance, the 1-WL algorithm gained
much attention from researchers across many fields. One of the most noticeable properties is
that the algorithm color codes the nodes of the input graph in such a way that in each iteration,
each color encodes a learned local substructure.

This algorithm functions by assigning the same color to all nodes that meet two criteria: 1)
they already share the same color, and 2) each color appears equally often in the set of the
node’s direct neighbors. The algorithm continues until the number of colors changes in each
iteration. For determining whether two graphs are non-isomorphic, the heuristic is applied to
both graphs simultaneously. The heuristic concludes that the graphs are non-isomorphic as
soon as the number of occurrences of a color differs between them. We present a more formal
definition of the algorithm in the following part in Section 3.4.

Since the graph isomorphism problem is difficult to solve due to the best known complete
algorithm only running in deterministic quasipolynomial time (Babai [2016]), the 1-WL algorithm,
running in deterministic polynomial time, cannot solve the problem completely. Moreover, Cai
et al. [1992] constructed counterexamples of non-isomorphic graphs that the heuristic fails to
distinguish, e.g., see Figure 3.2. However, following the work of Babai and Kucera [1979], this
simple heuristic is still quite powerful and has a very low probability of failing to distinguish
non-isomorphic graphs when both graphs are uniformly chosen at random as the number of
nodes tends to infinity.

To overcome the limited expressiveness of the 1-WL algorithm, it has been generalized to the
k-dimensional Weisfeiler-Leman algorithm (k-WL) by Babai [1979, 2016], as well as Immerman
and Lander [1990]5. This version works with k-tuples over the k-ary Cartesian product of
the set of nodes. Interestingly, this created a hierarchy for the expressiveness of determining
non-isomorphism, such that for all k ∈ N there exists a pair of non-isomorphic graphs that can
be distinguished by the (k + 1)-WL but not by the k-WL (Cai et al. [1992]).

5In Babai [2016] on page 27, László Babai explains that he, together with Rudolf Mathon, first introduced
this algorithm in 1979. He adds that the work of Immerman and Lander [1990] introduced this algorithm
independently of him.
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2.2. Graph Neural Networks
The idea of leveraging machine learning techniques, previously proven effective in various
domains, for graph-related tasks has been a well-established topic in the literature for the
past decades. However, researchers faced challenges in effectively adapting these techniques to
graphs of diverse sizes and complexities in the early stages. Notably, the works by Sperduti
and Starita [1997], Scarselli et al. [2008], and Micheli [2009] were the first prominent examples
of successful applications in this regard.

However, it was not until the emergence of more advanced models that the scientific
community truly recognized the significance and potential of Graph Neural Networks (GNNs).
Noteworthy among these advancements were the work of Duvenaud et al. [2015], who introduced
a differentiable approach for generating unique fingerprints of arbitrary graphs, as well as Li et al.
[2015], who applied gated recurrent units to capture graphs of various sizes, while Atwood and
Towsley [2016] utilized diffusional convolutions for the same purpose. Of particular significance,
however, were the contributions of Bruna et al. [2013], Defferrard et al. [2016] and Kipf and
Welling [2017], which extended the concept of convolution from its traditional application on
images to the domain of arbitrary graphs.

After the early success of these GNN models, Gilmer et al. [2017] introduced a unified
architecture for GNNs. The authors observed a recurring pattern in how information is
exchanged and processed among many of these works, including many mentioned in the
paragraph above. Leveraging these observations, Gilmer et al. [2017] devised the message-
passing architecture as a generalized framework for GNNs. Models using this architecture can
be referred to as Message-Passing-Neural-Network (MPNN); however, throughout this thesis,
we will use the term GNN and MPNN interchangeably, as the focus of this thesis is solely
on the message-passing architecture. This architecture uses the input graph as its basis for
computation and computes new node features for the graph in each layer. The computation of
each new node feature involves aggregating all the features of the neighboring nodes and the
node’s own feature. After applying each layer of a GNN model, a representation of the entire
graph is obtained by applying a pooling function (e.g. Ying et al. [2018]). This representation is
then further processed by common machine learning techniques like a multilayer perceptron for
the final output. We will present a more formal definition of this architecture in the following
part in Section 3.6; however, important to note is that the information exchange in the graph
across nodes is limited to a one-hop neighbor per layer.

With this general framework and the empirical success of some models using this message-
passing architecture, the question of how expressive models based on this architecture can be
gained a lot of attention in the scientific community. Many papers immediately established
connections to the 1-WL algorithm, among the most prominent being Morris et al. [2019] and
Xu et al. [2019]. These connections seem natural, as both methods share similar properties
in terms of how they process graph data. Most strikingly, both methods never change the
graph structurally since they only compute new node features in each iteration. Moreover,
both methods use a one-hop neighborhood aggregation as the basis for computing the new
node feature. Following this intuition, Morris et al. [2019], as well as Xu et al. [2019], showed
that the expressiveness of GNNs is upper-bounded by the 1-WL in terms of distinguishing
non-isomorphic graphs. Moreover, Morris et al. [2019] proposed a new k-GNN architecture that
operates over the set of subgraphs of size k. Interestingly, Geerts [2020] has shown that this
architecture imposes a hierarchy over k ∈ N that is equivalent to the k-WL hierarchy in terms
of its ability to distinguish non-isomorphic graphs, i.e., if there is a k-GNN that can distinguish

6



two non-isomorphic graphs, it is equivalent to say that the k-WL algorithm can also distinguish
these graphs.

Although there are other modifications of the message-passing architecture besides the
theoretical concept of k-GNN to increase the expressiveness of GNNs in terms of distinguishing
non-isomorphism, e.g., using node identifiers Vignac et al. [2020], adding random node features
Sato et al. [2021], Abboud et al. [2020], adding directed flows Beaini et al. [2021] and many
more. Relatively few works have been published that attempt to understand the representation
learned from a standard GNN.

Notable works include Nikolentzos et al. [2023b], where the authors, in addition to the normal
learning process, optimized GNNs to preserve a notion of distance in their representation and
examined the effectiveness of GNNs in utilizing such representations. However, their insights
can only be applied to these specially trained GNN models and not be generalized. In another
publication, Nikolentzos et al. [2023a] presented mathematical proof and empirical confirmation
showing how much structural information is encoded by modern GNN models. Their research
highlights that GNN models like DGCNN (Zhang et al. [2018]) and GAT (Veličković et al.
[2017]) encode all nodes with the same feature vector, while in contrast, models like GCN (Kipf
and Welling [2017]) and GIN (Xu et al. [2019]) encode nodes after k layers of message-passing
with features that relate with the number of walks of length k over the input graph form each
node, disregarding the local structure within the nodes are contained.
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Part I.

Theoretical Equivalence
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This part of the thesis focuses on the equivalence between 1-WL+NN and GNN. We will
begin by providing a preliminary section that formalizes all the concepts used in the proof and
introduces a general notation. Afterward, we will dedicate a separate section to present and
prove two theorems, which combined conclude the equivalence.

3. Preliminaries

This section will introduce and formalizes all concepts used throughout the proof and the rest
of the thesis. We start with general notations, introduce a general definition of graphs and
multilayer perceptrons, and familiarize the reader with the Weisfeiler-Leman algorithm. We
will introduce each framework independently, first the 1-WL+NN and then GNN. In the end,
we will briefly introduce important properties of collections of functions computed by both
methods.

3.1. General Notation
Let N denote the set of natural numbers such that N := {0, 1, 2, . . .}. By [n], we denote the set
{0, . . . , n} ⊂ N for each n ∈ N. Further, with {{. . .}}, we denote a multiset formally defined as
a 2-tuple (X,m), where X is a set of all unique elements and m : X → N≥1 a mapping that
maps each element in X to the number of its occurrences in the multiset.

3.2. Graphs
We will briefly introduce a formal definition for graphs and coloring on graphs. Starting with
the definition of a graph.

Definition 1 (Graph). A graph G is defined as a 3-tuple denoted by G := (V,E, l). This tuple
consists of a set of nodes V ⊂ N, a set of edges E ⊆ V × V , and a labeling function l : M → Σ.
The domain M of the labeling function can be either V , V ∪ E, or E, and the codomain Σ
is an alphabet with Σ ⊆ Nk, where k ∈ N≥1 is arbitrary. In the context of this thesis, the
assigned values by the labeling function are referred to as either labels or features, depending
on the dimension of Σ. In detail, if k = 1, we usually refer to the values as labels, otherwise as
features. Additionally, the set of all graphs is denoted by G.

Furthermore, a graph G can be either directed or undirected based on the definition of
its set of edges E. If E ⊆ {(v, u) | v, u ∈ V }, it represents a directed graph, whereas if
E ⊆ {(v, u) | v, u ∈ V, v ̸= u} such that for every (v, u) ∈ E there exists (u, v) ∈ E, it defines
an undirected graph. Additionally, for ease of notation, we will use V (G) and E(G) to denote
the set of nodes and the set of edges of G, respectively, as well as lG to denote the label
function of G. Further, with N (v) for v ∈ V (G) we denote the set of neighbors of v defined
as N (v) := {u | (u, v) ∈ E(G)}, and with d(v) for v ∈ V (G) the degree of node v, defined as
d(v) := |N (v)|.

We continue with the definition of a graph coloring.

11



Definition 2 (Graph Coloring). A coloring of a Graph G is a function C : V (G) → N that
assigns each node in the graph a color (here, a positive integer). Further, a coloring C induces
a partition P on the set of nodes, for which we define C−1 being the function that maps each
color c ∈ N to its class of nodes with C−1(c) = {v ∈ V (G) | C(v) = c}. In addition, we define
histG,C as the histogram of graph G with coloring C that maps every color in the image of
C under V (G) to the number of occurrences. In detail, ∀c ∈ N : histG,C(c) := |{v ∈ V (G) |
C(v) = c}| = |C−1(c)|.

Permutation-invariance and -equivariance

We use Sn to denote the symmetric group over the elements [n] for any n ∈ N. Sn consists
of all permutations over these elements. Let G be a graph with V (G) = [n], applying a
permutation π ∈ Sn on G, is defined as Gπ := π · G where V (Gπ) = {π(0), . . . , π(n)} and
E(Gπ) = {(π(v), π(u)) | (v, u) ∈ E(G)}. We will now introduce two key concepts for classifying
functions on graphs.
Definition 3 (Permutation Invariant). Let f : G → Y be an arbitrary function, then f is
permutation-invariant if and only if for all G ∈ G, where nG := |V (G)| and for every π ∈ SnG :
f(G) = f(π ·G).
Definition 4 (Permuation Equivariant). Let f : G → Y be an arbitrary function, then f is
permuation-equivariant if and only if for all G ∈ G, where nG := |V (G)| and for every π ∈ SnG :
f(G) = π−1 · f(π ·G).

3.3. Multilayer Perceptrons
In the following, we give a formal definition of multilayer perceptrons. These functions are also
known as feedforward neural networks in the literature. However, for the remainder of this
thesis, we will refer to them as multilayer perceptrons.
Definition 5 (Multilayer Perceptron). Multilayer perceptrons are a class of functions from Rn

to Rm, where n,m ∈ N≥1 are free to choose. In this thesis, we define a multilayer perceptron
as a finite sequence, such that a multilayer perceptron MLP is defined as MLP := (MLP)t∈[T ]
where T is the number of layers. For every t ∈ [T ], the t.th layer of the MLP is the t.th item in
the finite sequence (MLP)t. Further, all layers are recursively defined on any input v as:

(MLP)0(v) := v

(MLP)t+1(v) := σt(Wt · (MLP)t(v) + bt), ∀t ∈ [T − 1]
where σt is an element wise activation function, Wt is the weight matrix and bt the bias vector
of layer t. Note, that for each Wt, the succeeding Wt+1 must have the same number of columns
as Wt has rows, in order to be well-defined. Similarly, for every layer t, Wt and bt have to have
the same number of rows. Following this definition, when applying a MLP on an input v ∈ Rn

it is defined as MLP(v) := (MLP)T (v).

3.4. Weisfeiler-Leman Algorithm
The Weisfeiler-Leman algorithm consists of two main parts: the coloring algorithm and the
graph isomorphism test. We will introduce each part individually and present some implications
afterward.
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The Weisfeiler-Leman Graph Coloring Algorithm

The 1-WL algorithm computes a node coloring of its input graph in each iteration. In detail, a
color is assigned to each node based on the colors of its neighbors and its own current color.
The algorithm continues until convergence is reached, resulting in the final coloring of the graph.
We will now formally define this procedure and provide an illustrative example in Figure 3.1.

Definition 6 (1-WL Algorithm). Let G = (V,E, l) be a labeled graph. In each iteration i, the
1-WL algorithm computes a node coloring Ci : V (G) → N. In the initial iteration i = 0, the
coloring is set to C0 = l if l exists. Otherwise, for all v ∈ V (G) : C0(v) = c with c ∈ N being an
arbitrary but fixed constant. For i > 0, the algorithm assigns a color to v ∈ V (G) as follows:

Ci(v) = RELABEL(Ci−1(v), {{Ci−1(u) | u ∈ N (v)}}),

where RELABEL injectively maps the above pair to a unique, previously not used, color. The
algorithm terminates when the number of colors between two iterations does not change,
meaning the algorithm terminates after iteration i if the following condition is satisfied:

∀v, w ∈ V (G) : Ci(v) = Ci(w) ⇐⇒ Ci+1(v) = Ci+1(w).

Upon terminating we define C∞ := Ci as the stable coloring, such that 1-WL(G) := C∞.

The colorings computed in each iteration always converge to the final one, such that the
algorithm always terminates. In more detail, Grohe [2017] showed that it always holds after
at most |V (G)| iterations. For an illustration of this algorithm, see Figure 3.1. Moreover,
based on the work of Paige and Tarjan [1987] about efficient refinement strategies, Cardon and
Crochemore [1982] proved that the stable coloring C∞ can be computed in time O(|V (G)| +
|E(G)| · log |V (G)|).

G:
1-WL

C∞(G):
histG,C∞

{{ , , , }}

Figure 3.1.: An example of the final coloring computed by applying the 1-WL algorithm on the
graph G. The graph G consists of 4 nodes with all their labels being set to the
same color.

It is important to understand that since the algorithm was originally developed as a simple
heuristic for the graph isomorphism problem, which is an inherently discrete problem, the 1-WL
algorithm in its simplest form, as we presented it here, does only work on graphs with discrete,
one-dimensional node labels. Although it is quite easy to adapt the algorithm to respect discrete
edge labels of a graph by using them as weights in the neighborhood aggregation (Shervashidze
et al. [2011]), modifying its definition to work with continuous graph features is more complex.
Numerous proposed modifications have been put forward to address this integration in the
literature, such as those discussed by Morris et al. [2016]. However, note that this particular
topic will not be further investigated in this thesis, although its mention holds value for Part II.
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The Weisfeiler-Leman Graph Isomorphism Test

The isomorphism test uses the 1-WL coloring algorithm and is defined as follows.

Definition 7 (1-WL Isomorphism Test). To determine if two graphs G,H ∈ G are non-
isomorphic (G ≇ H), one applies the 1-WL coloring algorithm on both graphs “in parallel” and
checks after each iteration if the occurrences of each color are equal, else the algorithm would
terminate and conclude non-isomorphic. Formally, the algorithm concludes non-isomorphic in
iteration i if there exists a color c such that:

|{v ∈ V (G) | Ci(v) = c}| ≠ |{w ∈ V (H) | Ci(w) = c}|.

Note that this test is only sound and not complete for the graph isomorphism problem.
Counterexamples can be easily constructed where the algorithm fails to distinguish non-
isomorphic graphs. See Figure 3.2 for a straightforward example of where this test fails that
was discovered and proven by Cai et al. [1992].

G : H :

Figure 3.2.: This is an example of two graphs G and H that are non-isomorphic but cannot be
distinguished by the 1-WL isomorphism test.

Implications of the 1-WL Algorithm

One implication of the 1-WL algorithm and its isomorphism test is that, due to it not being
complete for solving the graph isomorphism problem, it gives rise to a related but weaker
relation than the isomorphism relation (≃). We define this relation as follows.

Definition 8 (1-WL Relation). Let X ⊆ G. For any graphs G,H ∈ X we will denote G ≃1WL H
if the 1-WL isomorphism test can not distinguish both graphs. Note that due to the soundness
of this algorithm, if G ̸≃1WL H, we always can conclude that G ̸≃ H.

The ≃1WL relation can further be classified as an equivalence relation, as it is reflexive,
symmetric and transitive. With this, we introduce a notation of its equivalence classes. Let
X ⊆ G and G ∈ X , then we denote with X/≃1WL(G) := {G′ ∈ X | G ≃1WL G

′} its equivalence
class.

Similarly, we define the notion 1-WL-Discriminating for collections of permutation invariant
functions.

Definition 9 (1-WL-Discriminating). Let X ⊆ G. Further, let C be a collection of permutation
invariant functions from X to R. We say C is 1-WL-Discriminating if for all graphs G1, G2 ∈ X
for which the 1-WL isomorphism test concludes non-isomorphic (G1 ̸≃1WL G2), there exists a
function hG1,G2 ∈ C such that hG1,G2(G1) ̸= hG1,G2(G2).
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3.5. 1-WL+NN
As the Section 2.1 shows, the 1-WL algorithm is quite powerful in identifying a graph’s
substructures and distinguishing non-isomorphic graph pairs. With the 1-WL+NN framework,
we define functions that utilize this structural information to derive application-specific insights.

Definition 10 (1-WL+NN). A 1-WL+NN model consists of three components that are applied
sequentially to its input: 1) The 1-WL algorithm, 2) An encoding function fenc operating on
graph colorings, and 3) An arbitrary multilayer perceptron MLP that further processes the
output of fenc. In detail, a 1-WL+NN model computes the function B, that is defined as follows:

B : G → Rk, G 7→ MLP ◦ fenc({{1-WL(G)(v) | v ∈ V (G)}}),

where 1-WL(G) is the coloring computed by the 1-WL algorithm when applied on G, and
k ∈ N≥1 is a freely selectable hyperparameter. For a better understanding and an illustrative
explanation, see Figure 3.3.

1-WL+NN

1-WL {{. . .}} fenc
(...
)

MLP 42

Figure 3.3.: This simplified illustration explains the components that make up a 1-WL+NN
model and how each one processes the input further. In detail, the model takes the
graph on the left as input and first applies the 1-WL algorithm, thereby obtaining
a multiset of the colors assigned by the algorithm. Then the encoding function
fenc is applied, resulting in a fixed-sized vector that is further processed by the
multilayer perceptron MLP. The output of the MLP is then propagated as the
1-WL+NN models output, here the number 42.

It is worth noting that this definition can be easily adjusted to accommodate node- or
edge-level tasks by applying the encoding function fenc and the multilayer perceptron MLP
elementwise to the colors of the multiset. However, for the purposes of this thesis, we will
not delve into these variations, as our main focus will be on graph-level tasks such as graph
classification or regression, which possess greater theoretical interest and are more prevalent
in most datasets. Furthermore, all the theoretical findings presented in this thesis can be
straightforwardly adapted to 1-WL+NN models designed for node- or edge-level tasks.

3.6. Graph Neural Networks (Message-Passing)
A Graph Neural Network (GNN) is a composition of multiple layers, where each layer computes
a new feature for each node and edge. Each GNN layer thus technically obtains a new graph
structurally identical to the previous one but with new feature information. After an input
graph has been passed through all layers, a final readout function is applied that pools all graph
features and derives a task-related output. With this, it is possible to apply a GNN to every
graph, regardless of its size, as the “computation” will only take place on the nodes and edges
of the graph.
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Note that in the following, we will restrict the definition to consider only node features;
however, one can easily extend it to include edge features as well.

Definition 11 (Graph Neural Network). Let G = (V,E, l) be an arbitrary graph. A GNN is a
composition of multiple layers and a final readout function where each layer t is represented by
a function f (t). The initial layer at t = 0 is a function of the format f (0) : V (G) → R1×d that is
consistent with l and translates all labels into a vector representation. In contrast, for every
t > 0, f (t) is recursively defined as:

f (t)(v) = f (t)
merge(f (t−1)(v), f (t)

agg({{f (t−1)(w) | w ∈ N (v)}})),

where f (t)
merge is an arbitrary function that maps the aforementioned tuple to a vector, effectively

“merging” them, while f (t)
agg is an arbitrary function that maps the multiset to a vector, effectively

“aggregating” it.
The readout function, referred to as Readout, is applied after the input graph has been passed

subsequently through all layers and is defined as follows:

Readout({{f (t)(v) | v ∈ V (G)}}).

This function pools the information from every node feature, processes it, and calculates a
fixed-sized output vector for the entire graph.

In summary, a GNN model will compute the function A defined as follows:

A : G → Rk, G 7→ Readout({{f (T )(v) | v ∈ V (G)}}),

where T is the number of layer of the GNN, and k ∈ N an arbitrary constant. To enable
end-to-end training of a GNN, it is essential that all its components are differentiable. Therefore,
we require all f (t)

merge and f (t)
agg functions for all t ∈ [T ], along with the final Readout function, to

be differentiable.

Note that, due to our definition of the f (t)
agg and the Readout function to operate over multisets,

both functions are permutation invariant by definition. With this, we can conclude that the
total composition A is permutation invariant, and with similar reasoning, it is also differentiable.
This property enables us to train A like any other machine learning method in an end-to-end
fashion, regardless of the underlying encoding used for graphs.

Furthermore, GNNs following this definition are regarded as Message-Passing-Neural-Network
(MPNN). This designation stems from each node exchanging information with its direct neighbors
in each layer. As a result, information during the processing of a graph is propagated by passing
many messages across the graph; thus, these layers are also referred to as message-passing
layers. As outlined in the introduction to this thesis, we will solely focus on GNNs utilizing the
message-passing architecture. Therefore we will use the term GNN and MPNN interchangeably
throughout this thesis. The definition and notation used here are inspired by Morris et al.
[2019] and Xu et al. [2019].

To bridge the gap from the theoretical definition to practical instances of the definition, we
will introduce in the following three distinct GNN architectures, as well as commonly deployed
Readout. Specifically, we will explore the Graph Attention Network (GAT) developed by Veličković
et al. [2017], Graph Convolutional Network (GCN) proposed by Kipf and Welling [2017], and the
Graph Isomorphism Network (GIN) introduced by Xu et al. [2019]. These architectures will serve
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as empirical baselines in Part II. Additionally, we will also elaborate on the reasons for this
choice of models in Part II in Section 5.2.2. We listed the definitions of the message-passing
layers of each model in Table 3.1.

Table 3.1.: Overview of the construction of the message-passing layers and their respective
learnable parameters by popular GNN architectures. A complete definition of the
GAT architecture including the attention coefficient αvu can be found in Definition 25
in the Appendix.

Model Merge Function Aggregation Function Learnable Parameters

GAT f
(t)
merge = σ(αvv · f (t)(v) + f

(t)
agg) f

(t)
agg =

∑
u∈N (v)

αvu ·W (t) · f (t−1)(u) αvu,W
(t)

GCN f
(t)
merge = ReLU

(
W (t)

1+d(v)f
(t−1)(v) + f

(t)
agg

)
f

(t)
agg =

∑
u∈N (v)

W (t)√
(1+d(v))·(1+d(u))

f (t−1)(u) W (t)

GIN f
(t)
merge = MLP(t)

((
1 + ϵ(t)

)
· f (t−1)(v) + f

(t)
agg

)
f

(t)
agg =

∑
u∈N (v)

f (t−1)(u) ϵ(t),MLP(t)

Commonly employed Readout functions in this context often involve straightforward pooling
techniques like elementwise summation, mean calculation, or maximum extraction. These
pooling operations are typically followed by a multilayer perceptron, which performs additional
processing on the aggregated information. Although more sophisticated pooling operations
exist, such as Set2Set developed by Vinyals et al. [2015], Xu et al. [2019] showed that given the
correct configuration, the elementwise summation pooling function combined with a following
multilayer perceptron suffices to create a GNN that is as expressive as the 1-WL algorithm in
distinguishing non-isomorphism.
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4. Theoretical Connection
This chapter forms the core of our theoretical investigation, where we explore the equivalence
between two frameworks: 1-WL+NN and GNN. We present two theorems to establish this
equivalence, each showing a separate equivalence direction. By combining these theorems, we
conclusively establish the equivalence. To maintain clarity and rigor, we will prove each theorem
separately afterward in a corresponding section.

In particular, the theorem will establish a theoretical connection between the frameworks
when applied to a finite collection of graphs, which we denote by X with X ⊂ G.

Theorem 12 (“GNN ⊆ 1-WL+NN”). Let A be a function from X to R computable by a GNN,
then A is also computable by 1-WL+NN.

Theorem 13 (“1-WL+NN ⊆ GNN”). Let B be a function from X to R computable by
1-WL+NN, then B is also computable by a GNN.

With these two theorems, the equivalence between both frameworks follows. Specifically,
every function computed by 1-WL+NN working over any arbitrary but finite X ⊂ G is also
computable by a GNN, and vice versa. Consequently, we can draw the following corollary:

Corollary 14. For an arbitrary function f working over X to R: The function f is computable
by a 1-WL+NN model, if and only if, the function f is computable by a GNN model.

As we move towards the empirical evaluation in Part II, it is evident that if we test a
1-WL+NN model on any of the benchmark datasets, it can theoretically achieve the same
level of performance as a GNN model. Notice that we did not leverage any constraints on the
encoding of graphs throughout the two theorems and their corresponding proofs.

4.1. Proof of Theorem 12: “GNN ⊆ 1-WL+NN”
We will prove Theorem 13 by first introducing a set of lemmas, which will be leveraged in
the proof of the theorem at the end of this section. The Lemmas 19 and 20, and the proof of
Theorem 12 extend the results by Chen et al. [2019].

To begin, we prove an essential insight that for any pair of graphs indistinguishable by the
1-WL isomorphism test, the output of any 1-WL+NN model applied to both graphs is identical.

Lemma 15 (1-WL+NN Equivalence). Let B be a function over X computable by 1-WL+NN,
then for every pair of graphs G1, G2 ∈ X : if G1 ≃1WL G2 then B(G1) = B(G2).

Proof of Lemma 15. Assume the above. Let B be an arbitrary function over X computable by
1-WL+NN, then B is composed as follows: B(·) = MLP ◦ fenc{{1-WL(·)(v) | v ∈ V (·)}}. Further,
let G1, G2 ∈ X be arbitrary graphs with G1 ≃1WL G2, then by definition of the ≃1WL relation
we know that 1-WL(G1) = 1-WL(G2). With this, the equivalence follows, since it implies the
equivalence of the multiset of colors for both graphs.

19



As a consequence of this lemma, we establish that every function computable by 1-WL+NN
is also permutation invariant.

Lemma 16 (1-WL+NN Permuation Invariance). Let B be a function over X computable by
1-WL+NN, then B is permutation invariant.

Proof of Lemma 16. Assume the above. Let G ∈ X be an arbitrary graph, and π be a
permutation of the set of nodes, V (G). By the definition of isomorphism, we know that G is
isomorph to π ·G. Further, since the 1-WL isomorphism test is sound, we know that G ≃ π ·G
implies G ≃1WL π ·G. Using Lemma 15, we can therefore conclude that: B(G) = B(π ·G).

With this property of 1-WL+NN functions, we can show the existence of a 1-WL-Discriminating
collection of functions computable by 1-WL+NN with Lemma 17. It is necessary to prove this
lemma as it forms the basis of Lemma 19.

Lemma 17. There exists a collection C of functions from X to R computable by 1-WL+NN
that is 1-WL-Discriminating.

Proof of Lemma 17. We will prove the lemma by giving a construction of such a collection. In
particular, we define the collection C as follows:

C := {Bc : X → R, G 7→ MLPid ◦ fc({{1-WL(G)(v) | v ∈ V (G)}}) | c ∈ N},

where MLPid is the identity function encoded as a multilayer perceptron that returns its input
and fc is an encoding function that returns the number of nodes colored as c. Since every
function Bc ∈ C is composed of the 1-WL algorithm, an encoding function fc, and a multilayer
perceptron MLPid, each function is computable by 1-WL+NN, and consequently, also the whole
collection.

To prove that this collection is 1-WL-Discriminating, we need to show two properties: 1)
Each function in the collection is permutation invariant, and 2) For each pair of graphs in X
distinguishable by the 1-WL isomorphism test, there must exist a function in the collection
that also distinguishes the pair.

For the first property, we already established in Lemma 16 that all 1-WL+NN functions are
permutation invariant. For the second property, let G1, G2 ∈ X with G1 ̸≃1WL G2. Further,
let C1, C2 be the final colorings computed by the 1-WL algorithm when applied on G1, G2
respectively. Due toG1 ̸≃1WL G2, there exists a color c ∈ N such that histG1,C1(c) ̸= histG2,C2(c),
such that Bc ∈ C exists with Bc(G1) ̸= Bc(G2), satisfying the second property.

The following Lemma 18 forms the basis in constructing 1-WL+NN computable functions
in the subsequent proofs of the Lemmas 19 and 20, as well as in the proof of Theorem 12.
Specifically, it shows that combining the output of multiple 1-WL+NN computable functions
and processing them further with a multilayer perceptron is also 1-WL+NN computable.

Lemma 18 (1-WL+NN Composition). Let C be a collection of functions computable by
1-WL+NN. Further, let B1, . . .Bn ∈ C and MLP• be a multilayer perceptron operating from Rn

to R, then the function B̂ composed as follows:

B̂ : X → R, G 7→ MLP•
(B1(G)

...
Bn(G)

),
is also computable by 1-WL+NN.
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Proof of Lemma 18. Assume the above. Let f1, . . . , fn be the encoding functions, and
MLP1, . . . ,MLPn be the multilayer perceptrons used by B1, . . . ,Bn, respectively. The key
idea of this proof is to construct an encoding function f∗ that “duplicates” its input and applies
each encoding function fi followed by each multilayer perceptron MLPi individually. Afterward,
we apply MLP• to the resulting concatenated vector. Thus, we can represent B̂ as follows:

B̂(·) = MLP• ◦ f∗({{1-WL(·)(v) | v ∈ V (·)}}).

In detail, we define the encoding function f∗ as follows:

f∗(·) := concat
(MLP1 ◦ f1(·)

...
MLPn ◦ fn(·)

),
where concat is the concatenation function that combines all encoding vectors into a single
vector. By doing so, we have shown that B̂ can be decomposed into three components of a
1-WL+NN model, allowing us to conclude that it is 1-WL+NN computable.

In the following two Lemmas 19 and 20, we will show that the indicator function 1 for the
≃1WL relation on X is 1-WL+NN computable. We formally define this function for any pair of
graphs G1, G2 ∈ X as follows:

1G1≃1WLG2 =
{

1, if G1 ≃1WL G2

0, else
.

This function plays a crucial role in the proof of Theorem 12. We will first introduce an
approximation of the negated version of 1G1≃1WLG2 in Lemma 19, where the output is switched.
Subsequently, we will use this approximation for the proof of Lemma 20 to construct a function
φG1(G2) that is equivalent to the indicator function 1G1≃1WLG2 .

Lemma 19. Let C be a collection of functions from X to R computable by 1-WL+NN that is
1-WL-Discriminating. Then for all G∗ ∈ X , there exists a function hG∗ from X to R computable
by 1-WL+NN, such that on any input G ∈ X : hG∗(G) = 0, if and only if, G ≃1WL G

∗.

Proof of Lemma 19. Assume the above. Since C is 1-WL-Discriminating, we know that for any
pair of graphs G1, G2 ∈ X with G1 ̸≃1WL G2, the function hG1,G2 ∈ C exists, that distinguishes
the pair, such that hG1,G2(G1) ̸= hG1,G2(G2). We define the function hG1,G2 working over X
for every such pair as follows:

hG1,G2(·) = |hG1,G2(·) − hG1,G2(G1)|
= max(hG1,G2(·) − hG1,G2(G1), 0) + max(hG1,G2(G1) − hG1,G2(·), 0)
= ReLU(hG1,G2(·) − hG1,G2(G1)) + ReLU(hG1,G2(G1) − hG1,G2(·)) (4.1.1)

Note, that in the equations above hG1,G2(G1) is independent of the input of hG1,G2(·) and
hence, a fixed constant. Furhter, the resulting function hG1,G2 is non-negative. Let G∗ ∈ X
now be fixed, then we will construct the function hG∗ with the desired properties as follows:

hG∗(·) =
∑

G2∈X
G∗ ̸≃1WLG2

hG∗,G2(·). (4.1.2)
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Since X is finite, the sum is finite and therefore well-defined. Next, we will show that this
construction fulfills the desired properties, by proving that for any input G ∈ X : hG∗(G) = 0,
if and only if, G ≃1WL G

∗. Note that G∗ is arbitrary but fixed. Let G ∈ X be an arbitrary
input graph:

1. If G∗ ≃1WL G, then every summand hG∗,G2 with G∗ ̸≃1WL G2, we know, using Lemma 15,
that hG∗,G2(G) is equal to hG∗,G2(G∗) which is by definition 0, such that hG∗(G) = 0.

2. If G∗ ̸≃1WL G, then hG∗,G(G) is a summand of hG∗(·), and since hG∗,G(G) > 0, we can
conclude hG∗(G) > 0 due to the non-negativity of each hG∗,G2 function.

Using Lemma 18, we can conclude that for any G∗ ∈ X , hG∗ is computable by 1-WL+NN, as
we can encode Equation (4.1.2) via a multilayer perceptron MLP where the constant hG∗,G2(G∗)
of Equation (4.1.1) will be the bias of the corresponding channel, such that the MLP exists.

It is crucial to note that in the special case where no pair of graphs within X is indistinguishable
by the 1-WL isomorphism test from another, the function hG∗ is still defined. However, the
function sums over zero summands, resulting in hG∗(·) = 0.

Thus, we proved that the function hG∗ is 1-WL+NN computable for any graph G∗ ∈ X . The
function hG∗ approximates the negated indicator function for the fixed graph G∗ by mapping
graphs indistinguishable from G∗ by the 1-WL algorithm to 0 while mapping every other graph
to something strictly larger than 0. The following proof will use this property to construct the
indicator function.

Lemma 20. Let C be a collection of functions from X to R computable by 1-WL+NN such
that for all G∗ ∈ X , there exists hG∗ ∈ C satisfying hG∗(G) = 0, if and only if, G ≃1WL G

∗, for
all G ∈ X . Then for every G∗ ∈ X , there exists a function φG∗ computable by 1-WL+NN such
that for all G ∈ X : φG∗(G) = 1G≃1WLG∗ .

Proof of Lemma 20. Assume the above. Due to X being finite, we can define for every graph
G∗ the constant:

δG∗ := 1
2 min

G∈X
G ̸≃1WLG∗

|hG∗(G)|.

The constant δG∗ represents the minimum value to which the corresponding function hG∗(·)
maps a graph G that is distinguishable from G∗ by the 1-WL isomorphism test, multiplied by
the factor 1

2 . The specific value of this factor is arbitrary; the crucial aspect is that it remains
less than 1, ensuring that the constant δG∗ remains strictly smaller than the minimum value of
hG∗(·) for any graph G where G ̸≃1WL G

∗.
It is important to note that in the special case where no pair of graphs within X is

indistinguishable by the 1-WL isomorphism test, the constant δG∗ is not well-defined. For these
cases, we set δG∗ := 1 for all G∗ ∈ X .

We further introduce a so-called “bump” function ψa(x) working from R to R, parametrized
by a ∈ R with a > 0 and defined as follows:

ψa(x) := max(x
a

− 1, 0) + max(x
a

+ 1, 0) − 2 · max(x
a
, 0)

= ReLU(x
a

− 1) + ReLU(x
a

+ 1) − 2 · ReLU(x
a

) (4.1.3)

The interesting property of ψa is that it maps every value x to 0, except when x is being drawn
from the interval (−a, a). In particular, it maps x to 1, if and only if, x is equal to 0. See
Figure 4.1 for a plot of the relevant part of this function with exemplary values for a.
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We use these properties and the constant δG∗ to define for every graph G∗ ∈ X the function
φG∗ that is equivalent to the indicator function for all graphs in X as follows:

φG∗(·) := ψδG∗ (hG∗(·)).

We will prove the correctness of this construction by showing that for a fixed graph G∗ the
following condition holds: ∀G ∈ X : φG∗(G) = 1G≃1WLG∗ . For this, consider two cases:

1. If G ≃1WL G
∗, then hG∗(G) = 0 resulting in φG∗(G) = ψδG∗ (0) = 1.

2. If G ̸≃1WL G
∗ then hG∗(G) ̸= 0, such that |hG∗(G)| > δG∗ so that hG∗(G) ̸∈ (−δG∗ , δG∗)

resulting in φG∗(G) = 0.
Note that we can encode φG∗ using Equation (4.1.3) via a multilayer perceptron MLP, where
δG∗ is a constant, such that the MLP exists. With Lemma 18 we can therefore conclude that
φG∗ is computable by 1-WL+NN for every graph G∗ ∈ X .

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.2
0.4
0.6
0.8

1

x
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Figure 4.1.: Illustration of the so-called “bump” function ψa(x) used in the proof of Lemma 20
with different exemplary values for a.

In conclusion, with Lemma 17, the Lemmas 19 and 20 establish the computability of the
indicator function 1G1≃1WLG2 over the set X by a 1-WL+NN model. Building upon these
results, we can prove Theorem 12, which states:
“Let A be a function from X to R computable by a GNN, then A is computable by 1-WL+NN.”
Proof of Theorem 12. Let A be a function that works over X to R computed by a GNN model.
We will prove that A is 1-WL+NN computable by decomposing the function and then argue
that the decomposition is computable by a 1-WL+NN model. For this let G ∈ X be an arbitrary
input graph, we can decompose A(G) as follows:

A(G) =
( 1

|X/≃1WL(G)|
∑

G∗∈X
1G≃1WLG∗

)
· A(G) (4.1.4)

=
∑

G∗∈X

1
|X/≃1WL(G)| · A(G) · 1G≃1WLG∗ (4.1.5)

=
∑

G∗∈X

1
|X/≃1WL(G∗)| · A(G∗) · 1G≃1WLG∗ (4.1.6)

=
∑

G∗∈X

A(G∗)
|X/≃1WL(G∗)| · φG∗(G) (4.1.7)
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where X/≃1WL(G) denotes the set of all graphs that are equivalent to G according to the ≃1WL
relation. We explain each equation step by step:

Equation (4.1.4): Multiplying A(G) by the factor in the parentheses maintains the equation
because it equals 1. This is because the sum “counts” the number of graphs
G∗ ∈ X that are indistinguishable from the input graph G by the 1-WL
isomorphism test, and then the count is divided by the number of graphs
in the equivalence class of G, which equals the count.

Equation (4.1.5): We can move both the factor A(G) and 1
|X /≃1WL(G)| into the sum by using

the distributive property of the space R.

Equation (4.1.6): Due to the output of the indicator function 1 being either 0 or 1, we
can infer that the product of each summand can only be nonzero if G∗

is indistinguishable by the 1-WL isomorphism test from G. This implies
that both are in the same equivalence class in these cases, such that
|X/≃1WL(G)| is equal to |X/≃1WL(G∗)|.
Additionally, since GNNs are, at most, as good as the 1-WL algorithm in
distinguishing pairs of non-isomorphic graphs (Morris et al. [2019], Xu et al.
[2019]), we can use the fact that for every graph G∗ ∈ X : if G∗ ≃1WL G,
then A(G∗) = A(G). Using the same reasoning as above with the indicator
function, we can replace the term A(G) by A(G∗).

Equation (4.1.7): Utilizing Lemma 20, we can replace the indicator function with φG∗(G).
In conclusion, we have decomposed the GNN function A(G) such that the only factors that
depend on the input graph G are the functions φG∗ , which take G as input. This observation
implies that all other factors are constants. Consequently, the entire decomposition can be
computed by a multilayer perceptron with a single layer, which takes the output of all φG∗

for all G∗ ∈ X , applied to the input graph G. The multilayer perceptron then multiplies each
of these values with the constant A(G∗)

|X /≃1WL(G∗)| and takes the sum. The existence of such a
multilayer perceptron is evident, and when combined with Lemma 18, we can assert that this
composition is 1-WL+NN computable.

Important, we can only do this since X is finite, making the overall sum finite and the
cardinality of X/≃1WL(G∗) well-defined for all graphs.

4.2. Proof of Theorem 13: “1-WL+NN ⊆ GNN”
In this section, we will prove the converse direction of Theorem 12. Similar to the previous
section, we will begin by introducing a set of lemmas that will play a crucial role in proving
Theorem 13.

We start by showing the existence of a collection of functions computable by GNNs that
is 1-WL-Discriminating. For the proof, we will devise message-passing layers for a GNN that
effectively compute a single iteration of the 1-WL algorithm per layer. Afterward, we show that
with a proper choice of the Readout function, we construct a collection of GNN functions that
is 1-WL-Discriminating. Although prior works by Morris et al. [2019] and Xu et al. [2019] have
already demonstrated how to construct message-passing layers to compute a single iteration of
the 1-WL algorithm per layer, we include our own construction with our notation in the proof
for two crucial reasons. First, it ensures the completeness of our proof without assuming major
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parts from other works. Second, and most importantly, the construction effectively highlights
the remarkable similarities and key distinctions between the 1-WL algorithm and GNNs in
general.

Lemma 21 (GNN 1-WL-Discriminating). There exists a collection C of functions from X to R
computable by GNNs that is 1-WL-Discriminating.

Proof of Lemma 21. Due to X being finite, we define the constants n,m, k as follows:

n := max
G∈X

|V (G)|, m :=
∑

G∈X
|V (G)|, and k := 1 + max

G∈X
v∈V (G)

|lG(v)|,

such that n is the maximum number of nodes of any graph in X , m is the total number of
nodes of the set X , and k is the largest label of any node of a graph in X plus 1.

We will utilize these constants to construct the collection of functions C := {Ac | c ∈ N} that
is 1-WL-Discriminating. For the remainder of this proof, we first describe the construction of an
arbitrary Ac ∈ C and afterward, prove that the collection C is 1-WL-Discriminating.

Each Ac consists of n message-passing layers. For the input layer of each input graph G ∈ X ,
we define f (0)(v) := lG(v) as the identity function, where no preprocessing of the node labels
occurs. Further, we define every other layer t with 1 ≤ t ≤ n as follows:

f (t)(v) := f (t)
merge(f (t−1)(v), {{f (t−1)(u) | u ∈ N (v)}}).

Here f (t)
merge is an injective function that maps its input into its codomain:

{i ∈ N | k + (t− 1) ·m ≤ i ≤ k + t ·m}

This function exists due to the finiteness of X . We can upper bound the cardinality of its
domain, the number of unique tuples, by the total number of nodes in X , which is m, and since
the cardinality of its codomain is exactly m, we can conclude the existence of the function.

Next, we will define the Readout function of Ac to be the function that returns the number
of nodes colored as c in the coloring of f (n).

By leveraging the results of Theorem 3 from the work of Xu et al. [2019], we can infer that
each layer of each Ac computes a single iteration of the 1-WL algorithm. This observation is
reasonable since the update equation for each layer injectively maps each tuple to a previously
unused color, similar to how the RELABEL function of the 1-WL algorithm operates. Moreover,
since the 1-WL algorithm terminates on any graph G ∈ X after at most |V (G)| ≤ n iterations,
the coloring computed by the layers of each Ac effectively perform n iterations of the 1-WL
algorithm when applied to any graph G ∈ X . Due to the convergence behavior of the 1-
WL algorithm, these additional iterations do not increase the expressiveness of the colorings
computed by each Ac, such that we can conclude for any graph G ∈ X :

∀c ∈ N : |{v ∈ V (G) | f (n)(v) = c}| = |{v ∈ V (G) | 1-WL(G)(v) = c}|,

which states that the colorings are equal for a bijection ϕ : N → N, such that we can infer that
the colorings are equally expressive for distinguishing non-isomorphism.

To prove that the collection C is 1-WL-Discriminating, we need to show two properties: 1)
Each function in the collection is permutation invariant, and 2) For each pair of graphs in X
distinguishable by the 1-WL isomorphism test, there must exist a function in the collection
that also distinguishes the pair.
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For the first property, by Definition 11 of GNNs, all functions computed by GNNs are
permutation-invariant. Regarding the second property, consider G1, G2 ∈ X with G1 ̸≃1WL G2.
Let C1 and C2 represent the final colorings computed by the 1-WL algorithm when applied to
G1 and G2, respectively. Since G1 ̸≃1WL G2, there exists a color c ∈ N such that histG1,C1(c) ̸=
histG2,C2(c). Since, we know that each Ac computes equally expressive colorings of G1 and G2,
we know that there exists a c′ ∈ N, such that Ac′(G1) ̸= Ac′(G2).

Similar to the proof in the previous section, we will use Lemma 22 to introduce the ability to
construct GNNs that take in as input multiple GNNs and then apply a multilayer perceptron to
the combined output. This insight is leveraged in the following two corollaries in the proof, as
well as in the final proof.

Lemma 22 (GNN Composition). Let C be a collection of functions computable by GNNs.
Further, let A1, . . . ,An ∈ C and MLP• be a multilayer perceptron operating from Rn to R, then
the function Â composed as follows:

Â : X → R, G 7→ MLP•
(A1(G)

...
An(G)

),
is also computable by GNN.

Proof of Lemma 22. Before we begin the proof, we briefly introduce two notations. For any
x ∈ Rd, we will use the notation x[i] to indicate the i.th element of the vector x. Additionally,
we indicate the merge and aggregation function used in layer t by Ai as f (t)

merge,i and f
(t)
agg,i.

Similarly, we denote the Readout function as Readouti and the input function of Ai as f (0)
i .

We will prove the lemma by giving a construction of a GNN model computing Â. For the
ease of readability and to reduce the complexity of the subsequent construction, we assume
that for all Ai its functions f (t)

merge,i, f
(t)
agg,i and Readouti map into the one-dimensional space R

for all layers t. With this assumption, we avoid the need for a formal notation of the number of
dimensions each of these functions map to.

Assume the above. Let T be the maximum number of layers of all A1, . . . ,An. We construct
the GNN Â with T layers, with the input layer defined as follows on an input graph G:

∀v ∈ V (G) : f̂ (0)(v) :=


f

(0)
1 (v)

...
f

(0)
n (v)

,
and each other layer 0 < t ≤ T utilizing the merge f̂ (t)

merge and aggregation f̂
(t)
agg functions as

constructed in the following:

f̂ (t)
merge(f̂ (t−1)(v), Agg) :=


f

(t)
merge,1(f̂ (t−1)(v)[1], Agg[1])

...
f

(t)
merge,n(f̂ (t−1)(v)[n], Agg[n])

, and

f̂ (t)
agg({{f̂ (t−1)(w) | w ∈ N (v)}}) :=


f

(t)
agg,1({{f̂ (t−1)(w)[1] | w ∈ N (v)}})

...
f

(t)
agg,n({{f̂ (t−1)(w)[n] | w ∈ N (v)}})

.
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Note that, not all Ai will be comprised of T layers, such that for these cases the functions
f

(t)
merge,i and f

(t)
agg,i will not be defined for all t ∈ [T ]. In these cases, we define the functions as

follows:

f
(t)
merge,i(f̂ (t−1)(v), Agg) := f̂ (t−1)(v), and

f
(t)
agg,i({{f̂ (t−1)(w) | w ∈ N (v)}}) := 0.

This definition of f (t)
merge,i and f (t)

agg,i results in the fact that the representation computed in the
last layer of Ai is forwarded to the last layer T of Â. Finally, we construct the Readout function
of Â as follows:

Readout({{f̂ (T )(v) | v ∈ V (G)}}) := MLP• ◦


Readout1({{f̂ (T )(v)[1] | v ∈ V (G)}})

...
Readoutn({{f̂ (T )(v)[n] | v ∈ V (G)}})

.
With this, the proof concludes. Note that this proof can easily be extended to work without
the assumption of each function mapping into a one-dimensional space.

As a consequence of the previous two lemmas, we find ourselves in a similar position as at
the beginning of the proof in Section 4.1. Specifically, we have established, through Lemma 21,
the existence of a collection C of functions that can be computed by GNNs and can effectively
distinguish any pair of graphs that are also distinguishable by the 1-WL algorithm. Furthermore,
with Lemma 22, we have demonstrated that the composition of multiple GNNs and a multilayer
perceptron remains computable by a single GNN. Consequently, we can utilize the same proofs
of Lemmas 19 and 20 to derive Corollaries 23 and 24, as the proofs are independent of the
concrete structure of 1-WL+NN functions, allowing us to apply them seamlessly to establish
the GNN computability of the indicator function.

Corollary 23. Let C be a collection of functions from X to R computable by GNNs that is
1-WL-Discriminating. Then for all G∗ ∈ X , there exists a function hG∗ from X to R computable
by GNN, such that on any input G ∈ X : hG∗(G) = 0, if and only if, G ≃1WL G

∗.

Corollary 24. Let C be a collection of functions from X to R computable by GNNs such that
for all G∗ ∈ X , there exists hG∗ ∈ C satisfying hG∗(G) = 0, if and only if, G ≃1WL G

∗, for all
G ∈ X . Then for every G∗ ∈ X , there exists a function φG∗ computable by GNNs such that for
all G ∈ X : φG∗(G) = 1G≃1WLG∗ .

In conclusion, with Lemma 21, the corollaries establish the computability of the indicator
function 1G1≃1WLG2 over the set X by a GNN. Building upon these results, we can prove
Theorem 13, which states:

“Let B be a function from X to R computable by 1-WL+NN, then B is computable by a GNN.”

Proof of Theorem 13. Let B be a function that works over X to R computed by a 1-WL+NN
model. We will prove that B is GNN computable by decomposing the function and then argue
that the decomposition is computable by a GNN model. For this let G ∈ X be an arbitrary
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input graph, we can decompose B(G) as follows:

B(G) =
( 1

|X/≃1WL(G)|
∑

G∗∈X
1G≃1WLG∗

)
· B(G)

=
∑

G∗∈X

1
|X/≃1WL(G)| · B(G) · 1G≃1WLG∗

=
∑

G∗∈X

1
|X/≃1WL(G∗)| · B(G∗) · 1G≃1WLG∗ (4.2.1)

=
∑

G∗∈X

B(G∗)
|X/≃1WL(G∗)| · φG∗(G) (4.2.2)

where X/≃1WL(G) denotes the set of all graphs that are equivalent to G according to the ≃1WL
relation. Since the decomposition is very similar to the one present in the proof of Theorem 12,
we will only provide reasoning for the correctness of Equations (4.2.1) and (4.2.2):

Equation (4.2.1): Due to the output of the indicator function 1 being either 0 or 1, we
can infer that the product of each summand can only be nonzero if G∗ is
indistinguishable by the 1-WL isomorphism test from G. Using Lemma 15,
we know that for every graph G∗ ∈ X : if G∗ ≃1WL G, then B(G∗) = B(G).

Equation (4.2.2): Utilizing Corollary 24, we can replace the indicator function with φG∗(G).
For all other equations, refer to the explanation provided in the proof of Theorem 12.

In conclusion, we have decomposed the GNN function B(G) such that the only factors that
depend on the input graph G are the functions φG∗ , which take G as input. This observation
implies that all other factors are constants. Consequently, we can reason that the entire
decomposition can be computed by a multilayer perceptron with a single layer, which takes
the output of all φG∗ for all G∗ ∈ X , applied to the input graph G. The multilayer perceptron
then multiplies each of these values with the constant B(G∗)

|X /≃1WL(G∗)| and takes the sum. The
existence of such a multilayer perceptron is evident, and when combined with Lemma 22, we
can assert that this composition is GNN computable.

Important to note, we can only do this since X is finite, making the overall sum finite and
the cardinality of X/≃1WL(G∗) well-defined for all graphs.
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Part II.

Empirical Testing
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The empirical part of this thesis is organized into three chapters. Firstly, we cover the
methodology used for conducting our experiments. Afterward, in Chapter 6, we explore the
results of the experiments and analyze various properties of both model types in detail. Finally,
Chapter 7 concludes the thesis with a discussion, highlighting insights, identifying issues, and
suggesting future research directions.

5. Experimental Setup
This part aims to compare the empirical performance of the 1-WL+NN framework to the

GNN framework. In particular, we aim to answer the following research questions:

Q1 Can 1-WL+NN models achieve comparable performance to GNN models empirically?
Q2 Are there observable differences in the learning behavior between 1-WL+NN and GNN

models?
Q3 To what extent does the expressiveness of 1-WL+NN models in terms of distinguishing

non-isomorphic graphs contribute to their empirical performance, and do GNN models
leverage their theoretical ability to be equally expressive?

Q4 Is there a substantial difference in the graph representations computed by each model type?

To address these questions, this chapter delves into the configuration and setup of our
empirical testing. We begin by presenting our carefully selected datasets, which serve as
the foundation for our evaluation. We highlight specific insights and characteristics of these
datasets that make them compelling choices for our study. Afterward, we focus on the models
we employ for testing and subsequent result comparison. We provide an overview of the
selected models, outlining their key features and motivations behind their inclusion in our
evaluation. Subsequently, we provide a description of the training pipeline and explain specific
hyperparameters for which we will optimize these models.

5.1. Datasets
We will begin by discussing our dataset selection and providing an individual introduction to
each dataset. Subsequently, we will assess the dataset balance and investigate the maximum
achievable accuracy of all our models on these datasets.

5.1.1. Choice of Datasets
In selecting the datasets for our thesis, we adhered to two fundamental principles to ensure the
robustness and diversity of our evaluation for GNN and 1-WL+NN models. The first principle
focuses on using widely recognized benchmark datasets that have been extensively employed in
previous studies. This principle enables us and readers to make meaningful comparisons with
existing results. The second principle focuses on choosing datasets that are distinct from one
another in terms of both their application domains and the way they encode information in
graphs.
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To fulfill the first principle, we opted for datasets from the TUDataset library. This
library, curated by Morris et al. [2020], serves as a widely recognized standard for evaluating
graph-related methods.

Regarding the second principle, we incorporated the insights from Liu et al. [2022], who
developed a comprehensive taxonomy for common graph benchmark datasets. Their work
examined the degree to which information is encoded in graph structures compared to node
features with respect to solving the task of the datasets. Based on their taxonomy, they
categorized datasets into three distinct classes:
Category 1: Datasets in which the most crucial information for solving the task is contained in

the node features.
Category 2: Datasets similar to the first category, but with the significant exception that the

node degree strongly correlates with the node features. In these datasets, utilizing
simple structural information, such as computing the node degree, is as beneficial
for solving the task as using the original node features.

Category 3: Datasets where the most crucial information is encoded within the graph structure
itself.

These categories help us understand how information is encoded in various datasets, such that
we aim to choose datasets from all three categories.

As a result of considering these two principles, we selected the following datasets for our thesis:
Enzymes, Imdb-Binary, Mutag, Nci1, Proteins, and Reddit-Binary for classification
tasks, and Alchemy and Zinc for regression tasks. For an overview of the elemental properties
of each dataset, see Table 5.1. We will now shortly introduce each dataset individually:

Enzymes, provided by Borgwardt et al. [2005], contains proteins in their tertiary structure.
Each node represents a secondary structure and has an edge to its three spatially closest nodes.
Furthermore, each node feature encodes the type of secondary structure (helix, sheet or turn),
as well as physical and chemical information. The task involves classifying each graph into one
of six distinct enzyme classes.

Imdb-Binary, provided by Yanardag and Vishwanathan [2015], contains ego networks. Each
node in the network represents an actor/actress, and a unidirectional edge exists between two
nodes if and only if the corresponding actors played together in a movie. The task involves
determining whether each ego network’s genre is action or romance.

Mutag, provided by Debnath et al. [1991], contains Nitroaromatic compounds. Each
compound is represented by a graph in which nodes represent atoms, with their types encoded
as node features, and edges represent atomic bonds. The task involves determining whether a
given compound has a mutagenic effect on Salmonella typhimurium bacteria.

Nci1, provided by Wale et al. [2008], contains chemical compounds. Each compound is
represented using a graph, in which nodes represent atoms, and edges represent atomic bonds.
Moreover, the atom types are encoded in the node features. The overall task involves determining
whether a given compound is active or inactive in inhibiting non-small cell lung cancer.

Proteins, provided by Borgwardt et al. [2005], contains proteins encoded similarly to
Enzymes. The task here is to determine whether each graph represents an enzyme.

Reddit-Binary, provided by Yanardag and Vishwanathan [2015], contains graphs that are
derived from popular Reddit communities. The nodes in these graphs represent users who are
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active in the community, while the edges represent interactions between the users. The task is
to identify whether a graph belongs to a community that is focused on questions and answers,
or one that is focused on discussions.

Alchemy, provided by Chen et al. [2019], consists of organic molecules, with each node
representing an atom and each edge representing an atomic bond. Additionally, each node
feature encodes various properties for each atom, while each edge encodes the bond type and
distance between atoms. The overall task is to compute 12 different continuous quantum
mechanical properties for each graph.

Zinc, provided by Bresson and Laurent [2019] and Irwin et al. [2012], consists of molecular
graphs where each node represents a heavy atom, and the corresponding node feature specifies
its type. The edges in the graph encode the bonds between atoms, and their features further
describe the type of bond. The task is to calculate a molecular property known as constrained
solubility (logP − SA − cycle).

Table 5.1.: Dataset statistics and properties for graph-level prediction tasks. This table has
been adapted from Morris et al. [2022].

Dataset
Properties

Number
of graphs

Number of
classes/targets

∅ Number
of nodes

∅ Number
of edges

Node
labels

Edge
labels

Taxonomy
Category6

C
la

ss
ifi

ca
tio

n Enzymes 600 6 32.6 62.1 ✓ ✗ 1
Imdb-Binary 1 000 2 19.8 96.5 ✗ ✗ 3
Mutag 188 2 17.9 19.8 ✓ ✗ 2
Nci1 4 110 2 29.9 32.3 ✓ ✗ 3
Proteins 1 113 2 39.1 72.8 ✓ ✗ 2
Reddit-Binary 2 000 2 429.6 497.8 ✗ ✗ 3

R
eg

. Alchemy 202 579 12 10.1 10.4 ✓ ✓ -
Zinc 249 456 1 23.1 24.9 ✓ ✓ -

5.1.2. Analysis of the Datasets

To ensure the reliability and fairness of our evaluation, we assess the balance of our selected
datasets for classification. To do this, we employ the Normalized Shannon-Index to evaluate the
balance of a dataset, where a value close to 0 indicates maximum imbalance, while a value close
to 1 signifies perfect balance. See Definition 26 in the Appendix for a formal definition of this
metric.

Table 5.2.: An overview of the Normalized Shannon-Index calculated for each dataset.
Dataset

Enzymes Imdb-Multi Mutag Nci1 Proteins Reddit-Binary
Normalized Shannon-Index 1 1 0.920 1 0.973 1

6Taxonomy of common graph benchmark datasets developed by Liu et al. [2022]
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Table 5.2 provides an overview of the Normalized Shannon-Index computed for each selected
classification dataset. Upon analyzing the data, we observe that all the datasets exhibit high
balance, as all their values are close to 1, assuring that the datasets do not suffer significant
class imbalances, which will remain important in the following section.

In addition to the balance of all datasets, another important aspect is understanding the
upper bound of performance achievable by both GNN and 1-WL+NN models on these datasets.
Unlike in other areas of machine learning where multilayer perceptrons can achieve near-
perfect performance due to their universal approximation capabilities (Hornik [1991]), GNN
and 1-WL+NN models have inherent limitations on their expressiveness. This restriction stems
from the connection of both frameworks to the 1-WL algorithm, which as outlined in Section 3.4
is restricted in its expressiveness. Therefore, assuming that GNN or 1-WL+NN models exist
that can achieve almost perfect accuracy on all classification datasets is not reasonable. Thus,
we calculate the theoretical maximum accuracy achievable by a perfect model for each dataset.
In detail, we investigate how many iterations of the 1-WL algorithm it takes to achieve this
accuracy. For a comprehensive overview of the accuracies achievable on all datasets, please
refer to Table 5.3. In this table, we have included the accuracy achievable when running the
1-WL algorithm for 0 iterations, which means taking the initial node features as a coloring and
assessing the expressiveness of this initial coloring.

Table 5.3.: An overview of the maximum theoretical classification accuracy achievable for each
dataset based on the number of 1-WL iterations in percent. A hyphen “-” indicates
that the maximum accuracy has converged with fewer iterations, implying that
further iterations do not improve the accuracy.

1-WL
Dataset

Enzymes Imdb-Binary Mutag Nci1 Proteins Reddit-Binary
Iterations: 0 81.4 60.6 93.1 91.3 91.9 83.9
Iterations: 1 100.0 88.6 95.7 99.5 99.7 100.0
Iterations: 2 - - 99.5 99.8 - -
Iterations: 3 - - 100.0 99.8 - -
Iterations: 4 - - - - - -

Max Accuracy 100.0 88.6 100.0 99.8 99.7 100.0

Upon examining the results, we observe that all datasets exhibit perfect or near-perfect
theoretical classification accuracies. This result makes interpreting results obtained from
actual 1-WL+NN or GNN models later on more straightforward. Additionally, the accuracy
achievable after each number of iterations provides a theoretical lower limit on the number
of message-passing layers a GNN must be composed of to be even capable of achieving this
accuracy.

We have conducted the same analyses on additional datasets, as their results might be
valuable to the reader. For these, see Table B.1 in the Appendix.

5.2. Choice of Models
In selecting our models, we aimed to use techniques that are generic and not highly specialized
for any of the datasets, such that insights we gain upon analyzing the model’s performance can
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be generalized better. Consequently, we opted for a basic set of models to maintain simplicity
and versatility.

5.2.1. 1-WL+NN Models
Our primary consideration for the 1-WL+NN models revolves around choosing an encoding
function, as all other components are fixed. We opt for encoding functions with two main
components: an optional preprocessing step of the color computed by the 1-WL algorithm and
a basic pooling function to convert the color histogram into a fixed-size vector.

In more detail, the optional preprocessing step involves a simple look-up table. If utilized,
this step maps each color injectively to a vector in the range of [−1, 1]n, where the value of n is
a hyperparameter. By encoding the color information into higher dimensions, this approach
aims to enhance efficiency during subsequent processing steps. For the second step, the pooling
component, we selected elementary functions such as elementwise Max, Mean, and summation
(Sum). In summary, each of the 1-WL+NN models can be uniquely identified by their encoding
functions; therefore, we will refer to each model by their encoding function as follows:

Embedding − {Max,Mean,Sum} or {Max,Mean, Sum},
where “Embedding” indicates the use of the optional preprocessing step.

5.2.2. GNN Models
As mentioned in the introduction to this section, our focus is on keeping the models basic.
Hence, we opt for GIN by Xu et al. [2019], GCN by Kipf and Welling [2017], and GAT by
Veličković et al. [2017] as the base architecture for the message-passing layers. Each of these
architectures was chosen for specific reasons. Additionally, we formally defined each of these
architectures in Table 3.1 in Part I.

Firstly, we included GIN as an obvious candidate because it has been proven to be as expressive
as the 1-WL algorithm (Xu et al. [2019], Morris et al. [2019]). This characteristic makes it
interesting when comparing it to 1-WL+NN models. Next, we also included GCN based on
its good empirical success in recent years. Furthermore, the insights provided by Nikolentzos
et al. [2023a] demonstrated that the node features computed by GCN and GIN are similar as
elaborated in Section 2.2, making GCN a reasonable alternative to GIN in cases where the
advantage of GIN’s expressiveness is not needed. Lastly, we added GAT as an alternative
approach to the other two architectures. In detail, Nikolentzos et al. [2023a] also showed that
the node features computed by GAT are entirely different from those computed by GIN or GCN.

Regarding the choice of Readout functions, we decided to utilize functions that are composed
of two components. The first component is one of the elementwise pooling functions, such
as Max, Mean, and Sum, to aggregate the information from a graph representation into a
fixed-sized vector. Secondly, we incorporate a multilayer perceptron to process the aggregated
information further, similarly to the 1-WL+NN models.

In summary, each of the GNN models can be uniquely identified by their GNN architecture
and the pooling function utilized; therefore, we will refer to each model by these two properties
as follows:

{GAT,GCN,GIN} − {Max,Mean, Sum}.
Note that the selection of the Readout function creates similarities between the GNN and

1-WL+NN models since the encoding functions of the 1-WL+NN model use the same pooling
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functions, and the in both frameworks, a multilayer perceptron further processes the output of
the pooling. These similarities play a crucial role in ensuring that any empirical differences
observed between the two frameworks are not attributed to the utilization of more powerful
techniques.

5.3. Experiments

For the empirical testing, we took measures to ensure the reliability of our results in terms
of hyperparameter configuration. Additionally, we aimed to ensure the reproducibility of the
training pipeline for each model.

5.3.1. Testing Procedure

We started by conducting experiments on the classification datasets, which serve as the basis
for our evaluation as these datasets allow for better scalability due to their smaller size than
the regression datasets. Therefore, the thesis will mainly investigate these datasets.

In our testing code, we employ a 10-fold cross-validation approach. Within this framework,
we further partition the training data randomly, allocating 10 % of it for validation purposes.
Consequently, each training iteration consisted of 81 % of the original dataset as the training
set, 9 % as the validation set, and 10 % as the test set. We repeat this testing procedure five
times to mitigate the influence of randomness on the model’s performance. Ultimately, we
record the mean accuracy on the test set along with its standard deviation as the performance
metric of the model. Note that the use of standard cross-validation for generating the splits
and the choice of mean accuracy as our metric is reasonable and justified as the datasets are
highly balanced, as demonstrated in Section 2.

For the regression datasets, we adopted a slightly different testing procedure. Due to their
larger scale compared to the classification datasets, we opted for a more time-efficient approach.
To achieve this, we utilized pre-existing training pipelines developed by Morris et al. [2020]
and Morris et al. [2022]. These pipelines utilize a fixed training, validation, and test splits,
accelerating the testing process. Similar to the classification datasets, we performed five runs
for each model configuration. We record the mean absolute error and its standard deviation, as
well as the mean logarithmic absolute error and its standard deviation of the test set across all
runs. Furthermore, we test two different fixed splits for each regression dataset: one utilizing
only 10 000 samples for training, while the other split uses the entire training set.

5.3.2. Hyperparameter Optimization

To ensure the trustworthiness of our empirical results and gain valuable insights into the optimal
configuration of 1-WL+NN models, we conducted a thorough hyperparameter optimization for
each type of model, both GNN and 1-WL+NN, and performed this optimization individually
for each dataset.

In order to ensure the comparability of our results with other works and limit the number
of hyperparameters requiring optimization, we followed standard practices when configuring
our models. Detailed information on all hyperparameters, including the ones we optimized
for, can be found in the Appendix. In particular, the hyperparameters for 1-WL+NN models
that are applied on the classification datasets can be found in Table B.2, for GNN models on
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the classification datasets in Table B.3, for 1-WL+NN models on the regression datasets in
Table B.4, and for GNN models on the regression datasets in Table B.5.

We also provide visualizations that attempt to illustrate the effect each hyperparameter
has on the performance of the resulting model when employed on a specific dataset. These
visualizations can be found for the hyperparameter optimization of 1-WL+NN models in Figures
Figures B.1 to B.6 and for GNN models in Figures B.7 to B.12 in the Appendix.

In the beginning, the first hyperparameter configurations we tested for 1-WL+NN models
showed considerable performance discrepancies when comparing them to the results achieved
by GNN models. We hypothesize that this difference can be attributed to the expressiveness of
the 1-WL algorithm, such that most graphs in a dataset get mapped to a unique coloring very
dissimilar to the colorings of graphs of the same class.

Consequently, we investigated the possibility of parametrizing the 1-WL algorithm to enhance
control over the expressiveness of the colorings it computes. Specifically, we focused on two
crucial parameters: 1) the number of iterations and 2) the usage of the convergence behavior
as an early termination criterion.

The advantage of this more granular parametrization is that it enables us to apply the same
number of 1-WL iterations to each graph processed by a 1-WL+NN model by deactivating the
convergence behavior and fixing the number of iterations. By doing so, the number of colors
used by the 1-WL algorithm remains contained, both in terms of the number of total unique
colors as well as the distance to another. Therefore, one of the most crucial hyperparameters
we optimized for all 1-WL+NN models was the number of 1-WL iterations. Additionally, if
employed, the size of the dimension of the look-up table was another significant parameter
to optimize. We will explore this hypothesis and the effect of the number of iterations on
performance in detail in Section 6.1.

In contrast, the hyperparameter selection for the GNN models was relatively less intricate.
The key parameters of interest here are the GNN architecture and the size of the hidden
dimensions used in each layer. The reason for this is that the different architectures offer certain
advantages over one another, while the size of the hidden dimensions enables easier learning by
allowing the model to store more information during graph processing.

5.3.3. Implementation Details and Result Reproducibility
The implementation of our models and training procedures was carried out using Python
3.10 along with the open-source library PyTorch7 and its extension PyTorch Geometric8.
Moreover, we leveraged Weights&Biases9 as our tool for coordinating and recording the
results of the hyperparameter optimization. The code for our experiments is publicly available
on GitHub at https://github.com/ericbill21/BachelorThesis, and the corresponding
results can be accessed via Weights&Biases at https://wandb.ai/eric-bill/Bachel
orThesisExperiments. We conducted our experiments on the RWTH High Performance
Computing cluster by the RWTH Aachen University as well as on private hardware, a MacBook
Air M1 2020. In detail, a total of 6 754 runs were conducted, with each run testing a specific
model configuration on a designated dataset. These runs required a substantial amount of
computation time, totaling 2 114 hours (over 88 days).

7A free and open-source machine learning framework. https://pytorch.org
8An open-source library that extends PyTorch. https://pytorch-geometric.readthedocs.io
9A platform for experiment tracking, hyperparameter tuning, and sharing of results. https://wandb.ai/
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6. Empirical Results
In this section, we present the empirical findings of our study. To examine the classification
accuracy achieved by the best-performing configuration of each model on each classification
dataset, please refer to Table 6.1. For regression datasets, Table 6.2 provides an overview of
the mean absolute error (MAE) for the best-performing configurations.

Due to the usage of existing training pipelines for experiments on the regression datasets,
we include the results of the GINE-ε model proposed by Morris et al. [2020] in Table 6.2. The
GINE-ε model utilizes the GIN architecture for message-passing layers, Mean as its pooling
function, and a two-layer MLP for the final processing of its input graph. This design closely
resembles our GIN:Mean model, with the crucial distinction being that GINE-ε incorporates
edge features in its computations.

The decision to exclude edge features from all our models, including all 1-WL+NN models, was
driven by two key factors. Firstly, our focus primarily revolved around the classification datasets,
all of which do not encode any information in their edge features (refer to Table 5.1). Secondly,
the regression datasets we utilized in our evaluation include continuous edge features, making
the application of the 1-WL algorithm more complex. Although some work exists on modifying
the 1-WL algorithm to incorporate continuous features, we opted for a more straightforward
and more scalable approach by not considering edge features in the computations of all our

Table 6.1.: Overview of the mean classification accuracies achieved by the best configuration of
each model for each dataset in percent and standard deviation. We highlighted the
best accuracy for the 1-WL+NN and GNN models for each dataset.

Method
Dataset

Enzymes Imdb-Binary Mutag Nci1 Proteins Reddit-Binary

1-
W

L+
N

N

Max 16.7 ±4.2 52.0 ±5.3 73.8 ±12.4 58.6 ±3.3 62.9 ±4.9 69.2 ±4.0

Mean 18.2 ±4.8 59.4 ±5.8 77.1 ±11.5 64.0 ±3.3 60.9 ±4.5 66.1 ±3.2

Sum 18.0 ±6.2 57.5 ±5.1 66.8 ±13.9 56.9 ±3.8 65.6 ±4.8 73.0 ±5.1

Embedding-Max 41.9 ±7.5 69.4 ±4.9 81.1 ±11.2 82.7 ±2.0 75.2 ±3.9 71.8 ±3.2

Embedding-Mean 45.8 ±6.8 72.4 ±4.1 84.1 ±9.1 83.1 ±1.9 72.7 ±4.6 75.4 ±2.8

Embedding-Sum 48.3 ±8.1 72.0 ±3.8 85.1 ±8.6 83.6 ±2.2 75.2 ±4.5 78.4 ±2.7

G
ra

ph
N

eu
ra

lN
et

wo
rk

s GAT:Max 31.2 ±6.0 70.7 ±4.8 71.1 ±12.2 58.0 ±4.2 72.5 ±5.1 77.7 ±5.0

GAT:Mean 28.9 ±5.9 70.9 ±3.7 74.8 ±9.1 66.1 ±2.8 64.9 ±6.4 70.0 ±6.9

GAT:Sum 34.4 ±7.0 72.2 ±4.5 82.1 ±11.2 69.8 ±2.6 73.4 ±3.9 78.1 ±4.2

GCN:Max 33.1 ±7.5 73.5 ±4.1 74.5 ±11.3 61.1 ±3.6 69.8 ±5.9 74.3 ±4.5

GCN:Mean 29.9 ±5.7 74.7 ±3.8 75.0 ±10.4 68.9 ±2.4 70.9 ±5.2 82.3 ±3.3

GCN:Sum 31.7 ±7.2 73.0 ±4.4 81.5 ±10.3 70.4 ±2.1 73.9 ±4.0 86.9 ±3.2

GIN:Max 29.2 ±6.2 70.8 ±4.7 77.3 ±10.7 79.9 ±2.2 74.3 ±5.1 76.1 ±3.6

GIN:Mean 31.7 ±6.7 71.1 ±5.4 82.4 ±9.8 71.3 ±2.2 72.0 ±4.0 73.5 ±3.8

GIN:Sum 28.9 ±8.7 69.5 ±4.8 84.6 ±8.7 70.8 ±2.3 73.2 ±4.3 74.0 ±4.3
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Table 6.2.: Overview of the mean absolute error and the standard deviation (logMAE) on
large-scale (multi-target) molecular regression tasks. We highlighted the lowest error
for the 1-WL+NN and GNN models for each dataset.

Method
Dataset

Alchemy Alchemy (10k) Zinc Zinc (10k)

GN
N

GINE-ε 0.103 ±0.001 -2.956 ±0.0298 0.180 ±0.006 -1.958 ±0.0479 0.084 ±0.0048 -

GIN:Max 0.604 ±0.004 -0.578 ±0.009 0.353 ±0.003 -1.228 ±0.006 0.124 ±0.004 0.427 ±0.009

GIN:Mean 0.643 ±0.014 -0.505 ±0.021 0.314 ±0.004 -1.469 ±0.044 0.110 ±0.005 0.339 ±0.032

GIN:Sum 0.523 ±0.016 -0.705 ±0.035 0.282 ±0.002 -1.890 ±0.031 0.104 ±0.005 0.298 ±0.034

1-
W

L+
N

N Embedding-Max 0.648 ±0.003 -0.511 ±0.009 0.409 ±0.003 -1.023 ±0.009 0.382 ±0.005 0.659 ±0.007

Embedding-Mean 0.617 ±0.003 -0.564 ±0.005 0.355 ±0.004 -1.269 ±0.020 0.229 ±0.003 0.484 ±0.009

Embedding-Sum 0.600 ±0.004 -0.625 ±0.032 0.305 ±0.001 -1.740 ±0.042 0.326 ±0.014 0.465 ±0.009

models. Nonetheless, this limitation does not compromise the integrity of our results, as our
main objective is to compare similar GNN and 1-WL+NN models. The inclusion of GINE-ε
showcases the potential and highlights the significance of edge feature information for solving
the dataset tasks of Alchemy and Zinc.

A notable finding when analyzing the presented results is that the performance of 1-WL+NN
models is comparable to that of GNN models. In fact, the best 1-WL+NN models even
outperform the GNN models in all classification datasets, with the exception of Imdb-Binary
and Reddit-Binary. These two datasets stand out among the classification datasets as they
lack node features. We will investigate this insight later on in more detail. Moreover, our
results align with the empirical findings of other GNN models in various studies. The accuracy
reported here falls within a similar range as observed in works by Xu et al. [2019], Morris et al.
[2022, 2020] and Zhang et al. [2018].

In the subsequent section, we will further analyze these results. Specifically, we will investigate
the tradeoff between generality and expressiveness in 1-WL+NN models, the differences in their
learning behaviors, the ability of GNN models to approximate 1-WL+NN models, the learned
pooled graph representations of each model type, the impact of GNN models performance by
preprocessing the data using the 1-WL algorithm, and finally the effect of large datasets on the
performance of 1-WL+NN models.

6.1. Fixed 1-WL Iterations: Tradeoff between Expressiveness and
Generality

As discussed in Section 5.3.2, we explored constraining the expressiveness of the 1-WL algorithm
by fixing the number of iterations it is applied to each graph in a 1-WL+NN model. The
intention behind this was to ensure that the resulting colorings of graphs computed using a
fixed number of iterations of the 1-WL algorithm would fall within a similar color range, thereby
limiting the total number of colors and the overall distance between each used color.

From a theoretical perspective, fixing the number of 1-WL iterations in a 1-WL+NN model
only limits its expressiveness. For instance, let k ∈ N now be fixed. If the standard 1-WL

8The results of GINE-ε on Alchemy and Zinc are adopted from Morris et al. [2020].
9The results of GINE-ε on Alchemy(10k) is adopted from Morris et al. [2022].
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algorithm converges on an input graph G after k′ < k iterations, the coloring computed after
k iterations is as expressive as the one obtained from the standard 1-WL algorithm since the
coloring converges after k′ iterations. On the contrary, if the standard 1-WL algorithm converges
after k′ > k iterations on an input graph G, the coloring obtained after k iterations is less
expressive and contains less information than the coloring derived from the standard 1-WL
algorithm.

Comparing the performance of 1-WL+NN models utilizing the standard 1-WL algorithm
to those utilizing the parametrized version with a fixed number of 1-WL iteration reveals a
significant difference across all classification datasets, which we demonstrate in Table 6.3. This
data confirms our belief that the standard 1-WL algorithm can be overly expressive for specific
tasks, as evidenced by the considerable performance gap between the two algorithm types.
As a consequence of these results, for the remainder of this thesis, we will only investigate
1-WL+NN models utilizing the parametrized version of the 1-WL algorithm with a fixed number
of iterations.

Table 6.3.: Comparison between the best performing 1-WL+NN models using the standard or
the paraemetrized 1-WL algorithm in percent and standard deviation. Additionally,
we included the average number of iterations for the standard version and the optimal
fixed number of iterations for the parametrized version of the 1-WL algorithm.

1-WL+NN Models Dataset

Enzymes Imdb-Binary Mutag Nci1 Proteins Reddit-Binary

Standard Test Accuracy: 34.2 ±6.7 67.0 ±4.3 76.3 ±9.4 78.9 ±2.1 71.4 ±4.9 70.9 ±3.8

∅ 1-WL Iterations: 3.0 ±1.7 1.1 ±0.7 4.2 ±1.6 3.9 ±1.7 3.0 ±1.7 4.1 ±0.9

Parametrized Test Accuracy: 48.3 ±8.1 72.4 ±4.1 85.1 ±8.6 83.6 ±2.2 75.2 ±3.9 78.4 ±2.7

# 1-WL Iterations: 1 1 1 3 1 1

Building on this insight, we will investigate the optimal number of 1-WL iterations that lead
to the best-performing models. Interestingly, the outcomes of the optimal number will indicate
how essential the expressiveness of the 1-WL algorithm is to solve the task. Therefore, a small
optimal number of iterations would suggest that tasks require minimal structural information,
while a higher number would indicate the importance of structural information.

To illustrate its effect, in Figure 6.1, we showcase the performance achieved by all models
and configurations grouped by the number of 1-WL iterations for each dataset in a violin graph.
Note that both classification and regression datasets are included in this figure. Depending on
the dataset type, the y-axis represents either classification accuracy or test error, where higher
accuracies imply better performance for classification tasks, and higher test errors imply poorer
performance for regression tasks (and vice versa).

In general, the results indicate that the performance of 1-WL+NN models tends to improve
as the number of 1-WL iterations decreases, except for the Nci1 and Zinc datasets.

Notably, for Nci1, the optimal number of iterations coincides with the number of 1-WL
iterations needed for the maximum achievable accuracy (refer to Table 5.3). This correlation
holds for all other classification datasets, except for Mutag. However, the behavior observed
in Mutag can potentially be attributed to the fact that according to the introduced taxonomy
(Liu et al. [2022]) in Section 5.1, Mutag can be effectively solved by simply replacing its node
features with an encoding of the node degree. Since the first iteration of the 1-WL algorithm is
efficiently an encoding of the node degree, this might explain the observed pattern.
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Figure 6.1.: Overview of the performance achieved by all tested 1-WL+NN configurations
grouped by the fixed number of 1-WL iterations for each dataset. The y-axis
uses different metrics based on dataset type: accuracy in percent for classification
datasets and mean absolute error for regression datasets.

Interpreting the results of the Zinc dataset is more complex. While the results on the smaller
subset of the dataset, Zinc10K, clearly indicate that fewer 1-WL iterations yield better results,
the results for the full Zinc dataset suggest the opposite. This discrepancy could be attributed
to the limited number of runs conducted on the entire dataset, which were restricted due to
time constraints. Therefore, these results should be interpreted with caution.

In conclusion, reducing the number of 1-WL iterations leads to improved generability and
overall better performance of the models, with the clear exception of Nci1. However, as
our results indicate, most 1-WL+NN models achieve optimal performance when employing
only a single iteration of the 1-WL algorithm, which is essentially equivalent to encoding the
node degree. This observation demonstrates that 1-WL+NN models do not require the full
expressiveness of the 1-WL algorithm to achieve comparable performance to GNN models,
which raises the question of whether GNN models, despite their theoretical ability to be highly
expressive, also tend to rely primarily on node degree information for computation. To explore
this question fully, we will first investigate the difference in the learning behavior, in which
we will give reasons as to why 1-WL+NN models achieve their best performance with a small
number of 1-WL iterations.

6.2. Difference in Learning Behavior between GNN and 1-WL+NN
Models

This section investigates the differences in learning behavior between 1-WL+NN and GNN
models. In particular, we will investigate the ability to generalize by assessing the degree of
overfit for each type of model.

Figure 6.2 represents the difference in performance between the training and testing performance
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for both 1-WL+NN and GNN models across all classification datasets. Different quantiles from
the best-performing models were considered, ranging from the top 1 % to the top 100 %. Each
bar in the graph represents the mean difference between training accuracy and test accuracy for
the respective quantile of runs. 1-WL+NN models are depicted in blue, while GNN models are
represented in orange. In comparison, shorter or negative bars indicate better generalization
where the performance on the training set aligns more closely with the testing set. The black
line in each bar represents the standard error.
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Figure 6.2.: Mean difference of the classification accuracies of the training and testing set for
each dataset. In detail, we grouped by different quantiles of the best-performing
models and the type of the model.

The learning behavior of 1-WL+NN models presents a unique challenge due to the expressiveness
of the 1-WL algorithm, which directly impacts their performance. Compared to GNN models,
1-WL+NN models exhibit a significant discrepancy between their training and test performance.
While it is common to observe higher training performance than testing performance in various
machine learning applications, this discrepancy is particularly pronounced in our evaluation of
the 1-WL+NN models.

Analyzing Figure 6.2 reveals that 1-WL+NN models exhibit more significant overfitting than
GNN models, especially on datasets such as Enzymes, Mutag, Proteins, and Reddit-Binary.
For instance, in the case of Enzymes, the top 1 % of best-performing 1-WL+NN models display,
on average, a 27 % higher training accuracy than their test accuracy, highlighting the extreme
extent of overfitting in 1-WL+NN models.

While GNN models also experience some overfitting, primarily observed for the Nci1 dataset,
it is not as prevalent across all datasets and not as drastic as for 1-WL+NN models. Moreover,
in datasets like Mutag or Reddit-Binary, GNN models demonstrate superior generalization
capability. In these cases, the mean difference in performance is close to 0 %, and in the case
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of Mutag, it is even negative, which indicates that the tested GNN models were able to learn
general patterns in these datasets rather than simply memorizing the data.

However, this raises the question as to why 1-WL+NN models exhibit such drastic overfitting.
We hypothesize that the expressiveness of the 1-WL algorithm leads to the computation of highly
detailed colorings of the 1-WL+NN’s input graphs, such that the models simply memorizes
these.

To gain insight into the algorithm’s expressiveness, we calculated the ratio of unique colors to
the total number of possible colors for each classification dataset. For example, the Enzymes
dataset consists of 600 graphs with a total of 19 580 nodes. After a single iteration of the 1-WL
algorithm, all colorings consist of only 231 unique colors, accounting for less than 0.01 % of
the total number of possible unique colors (the total number of nodes). However, after two
iterations, this number has already increased to 10 416, comprising 53.2 % of the total available
colors. This example demonstrates the significant expressiveness of the colorings after just a
few iterations.
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Figure 6.3.: Overview of the ratio of unique colors used by the 1-WL algorithm when applied
for a specified number of iterations for each dataset relative to the total number of
possible unique colors (the total number of nodes in the dataset). We provided
an enlargement of the number of 1-WL iterations commonly used to showcase the
values for these numbers better.

Figure 6.3 illustrates the ratio of unique colors used compared to the total possible number
of unique colors (total number of nodes in each dataset). As expected, due to the convergence
behavior of the 1-WL algorithm, each ratio converges at some point. However, the ratios
rise rapidly and drastically for all datasets initially, indicating the strong expressiveness of
the algorithm for already small numbers of iterations. Even a relatively small ratio, such as
approximately 10 %, signifies a significant number of unique colors in the colorings computed
by the 1-WL algorithm. It is important to consider the scale of the datasets when interpreting
these ratios. For example, the Mutag dataset consists of approximately 3 000 nodes, while
the Enzymes and Imdb-Binary datasets contain around 20 000 nodes each. The Proteins
dataset reaches 43 000 nodes, followed by the Nci1 dataset with 122 000 nodes, and finally, the
Reddit-Binary dataset with 859 000 nodes. For a comprehensive overview of the datasets and
their sizes, please refer to Table 5.1, and for detailed information on the unique color count, also
including the regression datasets and their different splits, consult Table B.7 in the Appendix.

Furthermore, it is important to note that the colors assigned by the 1-WL algorithm have no
inherent structural connection between them. Even if two nodes are colored with two distinct
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integers with a small numerical distance, this does not imply any similarity between them.
While our experiments use an implementation of the 1-WL algorithm that assigns each node
the smallest unused color, a meaningful connection about the numerical distance of colors is
still absent due to shuffling the dataset and applying the 1-WL algorithm for a fixed number of
iterations.

To investigate the impact of the number of 1-WL iterations on overfitting, we plotted
Figure 6.4, which focuses solely on 1-WL+NN models and compares the different numbers of
1-WL iterations. Across all classification datasets, it is evident that the overfitting behavior
becomes more substantial when increasing the number of 1-WL iterations. This finding supports
our belief that the explosive increase in the number of unique colors is the primary reason
for the observed overfitting behavior. In the case of Enzymes, with an increased number
of 1-WL iterations, the average training accuracy is over 60 % higher than the test accuracy,
demonstrating the worsening of the overfitting behavior.
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Figure 6.4.: Mean difference in the classification accuracy of the training and test sets achieved
by all 1-WL+NN models for each dataset. In detail, we grouped the best models
according to different quantiles and the number of iterations of the 1-WL algorithm
used by each model.

In conclusion, our analysis reveals that 1-WL+NN models exhibit optimal generalization
when limited to one iteration of the 1-WL algorithm. Increasing the number of iterations leads
to a significant overfitting behavior. This insight indicates that the expressiveness of the 1-WL
algorithm surpasses the requirements for effective learning. In comparison, GNN models excel
in learning and representing graph structures in a more generalized manner. The observation
that a single iteration of the 1-WL algorithm leads to the best generalization also aligns with
the results from the previous section, where the models achieving the highest accuracy on the
test set also utilized only a single iteration of the 1-WL algorithm (except for the Nci1 dataset).
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This observation raises an intriguing question: Do GNNs also attempt to compute a similarly
expressive representation of all graphs, akin to a single iteration of the 1-WL algorithm? We
will explore this question in the following section.

6.3. GNNs approximating 1-WL Coloring

This section will explore the node features computed by a GNN. Specifically, we will analyze
the ability of GNNs to approximate the coloring computed by a single iteration of the 1-WL
algorithm.

To visualize the approximation capabilities of the best-performing GNN models on the
classification datasets, refer to Figure 6.5. The visualization consists of a pair of color-coded
matrices for each dataset, where each pair corresponds to a single randomly drawn graph from
the test set of the respective GNN model. The left matrix illustrates the distance matrix of the
node representations computed by the GNN model for each pair of nodes i and j. Similarly,
the right matrix represents the distances of the colorings generated by a single iteration of
the 1-WL algorithm between each pair of nodes i and j. The distances are measured using
the Euclidean distance and then normalized between 0 and 1 for the GNN matrix. While the
distances between the 1-WL coloring are either 0 (for nodes with the same color) or 1 (for nodes
with different colors) since the colorings produced by the 1-WL algorithm are discrete and do
not encode any information in their distances. Furthermore, we computed the Mean Absolute
Error (MAE) as a single value by averaging the absolute differences between both matrices,
such that the value indicates the similarity between both matrices. The MAE, along with its
standard deviation and the index of the graph in the datasets, is included on the right side of
the 1-WL distance matrix.

The visualization shows that the GNN representations already provide convincing approximations
of the patterns observed in the 1-WL algorithm’s matrix. However, it is important to note that
these results are based on a single randomly selected graph from each model’s test set. To
obtain a more comprehensive understanding of the approximation capabilities, we repeated this
process for each dataset using ten randomly selected graphs from the test set of the respective
GNN model, refer to Figures B.13 to B.19 in the Appendix.

Before diving deeper into analyzing the approximation capabilities, it is crucial to highlight
the significant difference between the node representations computed by a GNN and the colors
computed by the 1-WL algorithm. Unlike the discrete colors with no order relation calculated by
the 1-WL algorithm, the representations computed by each GNN model are multidimensional and
continuous. This difference makes a perfect approximation of the 1-WL colorings challenging,
as determining when two node representations are similar is not as straightforward as in
the discrete 1-WL case. In the visualization, we avoided making this decision by uniformly
normalizing the distances between 0 and 1 and using a continuous color bar for color coding
similar nodes.

To evaluate the approximation of the 1-WL coloring of the best-performing GNN on the
entire dataset, we employed two approaches that dynamically determine the significance of a
distance: 1) Continues Approximation: evaluating the approximation using a threshold value
for determining similarity and 2) Binary Approximation: translating distances into binary
distances and using the F1 score for assessing similarity.

In the first procedure, Continous Approximation, two node representations are considered
similar if their Euclidean distance is less than a threshold value, ϵ. Additionally, we consider
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Figure 6.5.: Visualizing the performance of the best-performing GNN models of each dataset in
approximating node colors computed by the 1-WL algorithm after running for one
iteration. Here we randomly sampled a single graph for each dataset and visualized
the approximation performance.

the distances perfectly separable if their distance is greater or equal to 1 − ϵ. In detail, we
modify the GNN distance matrix for every graph such that all distances less than ϵ are set
to 0, all distances greater or equal to 1 − ϵ to 1, otherwise the original distance is preserved.
Afterward, we compute, as before, the MAE between each GNN matrix and the 1-WL color
matrix and average all values for the entire dataset in a single MAE value in the end. We tested
this procedure with various threshold values ϵ ∈ [0, 0.5). See Figure 6.6a for a visualization of
the MAE for all classification datasets. Since the distances are normalized, a higher ϵ value
indicates classifying the majority of distances as negligible. As a result, the values of interest
are small, which is why a logarithmic scale is used for the x-axis.
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Figure 6.6.: Results obtained by using the proposed evaluation procedures to assess the ability
of GNNs to approximate 1-WL colorings.

The second procedure, Binary Approximation, aims to transform the regression-like values
into a classification task by introducing a threshold value, ϵ, which maps distances between
two node representations to a binary value. Distances less than ϵ are classified as 0, while
distances greater than or equal to ϵ are classified as 1. This process generates a distance matrix
with binary values, and the F1 score is used to evaluate the approximation capability of this
newly devised matrix to the 1-WL coloring distance matrix. The process is repeated for each
graph in a dataset, and the average F1 score is calculated as the final evaluation metric. Since
the number of node pairs distinguished by the 1-WL algorithm differs from the number of
nodes assigned the same color, an imbalance between the two distances, 0 and 1, exists. To
counter any biases due to this imbalance, where the F1 score is calculated independently for
each distance and then averaged. Figure 6.6b provides a visualization of the results for each
classification dataset.

Analyzing the figures, it becomes apparent that the approximation of the 1-WL coloring
is imprecise, as indicated by the relatively high MAE and the varying F1 scores for different
datasets, with the clear exception of the Imdb-Binary dataset.

The performance of the Imdb-Binary dataset can be attributed to the fact that the Imdb-
Binary and Reddit-Binary datasets lack node features, such that we initialize their features
using the common procedure of one-hot encoding their node degrees. Since the coloring
computed by a single iteration of the 1-WL algorithm is an encoding of the node degree,
this explains the good performance of the Imdb-Binary dataset. However, due to the large
size of the Reddit-Binary dataset and its graphs, a one-hot encoding of the node degree
is not practical. Instead, a continuous, one-dimensional node degree encoding is employed
that uniformly maps a node degree into the range [−1, 1]. This difference in encoding explains
the significant performance gap observed between the two datasets in both approximation
evaluations, see Figure 6.6.

Interestingly, the MAE remains constant for ϵ values up to 0.3, as depicted in Figure 6.6a,
suggesting that the GNN models tend to map nodes with different values far away from each
other and vice versa for small values. This observation aligns with the low standard deviation
values, indicating consistent behavior across all graphs. Since ϵ = 0.3 is already a considerable
threshold for removing distances as the maximum is 0.5, we infer that the GNNs compute a
coloring that incorporates essential information from the 1-WL coloring while leaving out less
important information. The visual representations show that the distances between nodes
exhibit similar patterns as the coloring produced by the 1-WL algorithm, although not as
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perfect. Since the GNN models perform nearly as well as most of the 1-WL+NN models in
terms of their accuracy performance, we conclude that GNNs are able to learn a more efficient
encoding of the graph structure that holds the most important structural information of the
1-WL coloring.

Analyzing Figure 6.6b, where we mapped each distance matrix to discrete distances based
on the ϵ value, we observe that each dataset has its own optimal threshold value ϵ for the F1
score. Interestingly, these optima consistently fall within a narrow range between 0.0 and 0.2.
Moreover, most datasets achieve a high F1 score, providing further evidence for our hypothesis
regarding the encoding of essential structural information. With the exception of Reddit-
Binary, almost all datasets achieve a score higher than 0.77. Notably, the Nci1 dataset stands
out with an exceptional Mean F1 score of 0.95 for ϵ = 0.2. This result indicates that the node
representations computed by the best GNN model for Nci1 effectively encode the structural
information captured by a single iteration of the 1-WL algorithm. Furthermore, considering the
dataset taxonomy introduced in Section 5.1, Nci1 belongs to the dataset category that encodes
a substantial amount of information in their graph structures, which aligns with our findings.

It is also worth noting that Nci1 is the only dataset that demonstrates improved performance,
in terms of accuracy, with an increased number of 1-WL iterations in the testing of the 1-WL+NN
models (refer to Figure 6.1). Therefore we also, explored the capability of the best performing
GNN model on Nci1 to approximate the colorings computed after applying the 1-WL iteration
for three iterations. The results are visualized in Figure B.17 in the Appendix. However, as
explained in the previous section, the number of unique colors increases significantly with an
increased number of 1-WL iterations, which leads to the fact that the majority of nodes are
colored uniquely (refer to Figure 6.3). Consequently, almost all nodes in a graph need to be
mapped to separable node representation by a GNN. To investigate whether this holds for any of
the datasets, we visualized the frequency of distances by creating ten uniformly non-overlapping
intervals between 0 and 1 and counted the number of distances that fall in each interval in
Figure 6.7. Analyzing the figure reveals no concentration in the frequency of large distances for
any of the datasets. Therefore, we conclude that GNNs cannot effectively approximate a higher
number of 1-WL iterations.

[0.0, 0.1)
[0.1, 0.2)

[0.2, 0.3)
[0.3, 0.4)

[0.4, 0.5)
[0.5, 0.6)

[0.6, 0.7)
[0.7, 0.8)

[0.8, 0.9)
[0.9, 1.0]

Distance Intervals

10 2

10 1

100

Fr
eq

ue
nc

y

Datasets:
ENZYMES
IMDB-BINARY
MUTAG
NCI1
PROTEINS
REDDIT-BINARY

Figure 6.7.: Visualization of the frequency of the distance between node pairs in the
representation computed by the best-performing GNN mode, using a logarithmic
scale on the y-axis. In detail, we divided the distance space into ten non-overlapping
intervals and counted the number of occurrences that fall into this interval for each
dataset.
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In conclusion, considering the similar accuracy performance of GNN and 1-WL+NN models
and the relatively robust approximation capabilities of GNNs compared to the 1-WL coloring
after a single iteration, we argue that GNNs learn to efficiently encode the essential information
in a graph for solving the task by striking the right balance between incorporating structural
and label information. Further, given that both frameworks achieve comparable performance
on all datasets in terms of accuracy, combined with the fact that most models utilize only a
single iteration of the 1-WL algorithm or an approximation of the coloring, the question arises
as to whether this difference remains when pooling this information using the same pooling
function. We will investigate this question in the following section.

6.4. Comparing Pooled Graph Representations: GNN vs. 1-WL+NN
Models

After the previous section, we observed that GNNs do not perfectly approximate the coloring
calculated by the 1-WL algorithm. However, we hypothesized that GNNs might employ a
more efficient encoding containing only essential information. To investigate further, we will
examine the graph representations derived after pooling the node representations analyzed in
the previous section. We aim to establish if these graph representations hold the same amount
of information and share similarities. If they do, this will strengthen our hypothesis that the
GNN models learn a more efficient encoding, and it suggests that the full expressiveness of the
1-WL algorithm may not be necessary for these tasks.

To achieve this, we selected the best-performing GNN and 1-WL+NN models in terms of
classification accuracy for each dataset and replaced the final multilayer perceptron with various
algorithms. Specifically, we used two different configurations of Support Vector Machines (SVM):
one with a linear kernel (SVM Linear) and another with a radial basis function (SVM RBF).
Additionally, we employed the k-Nearest-Neighbor (k-NN) classifier for different values of k. Each
algorithm was trained exclusively on the fixed output of the pooling function. To ensure fair
comparisons, we froze the weights of the GNN models and the Look-Up Table of the 1-WL+NN
models during this process to ensure no optimization of underlying parameters before pooling.
This approach guarantees more comparable results across algorithms. Moreover, we maintained
the same training, validation, and test split used for training and evaluating the MLP. For a
comprehensive evaluation, we summarized the accuracies and standard deviations achieved by
each method, comparing them to the MLP’s performance in Table 6.4. Furthermore, in the case
of the k-NN algorithm, we provided the achieved accuracy for the optimal k value, including
the k value in the parentheses. This analysis will allow us to make statements about the linear
separability of the graph representations as well as how well these cluster with respect to their
class labels.

Evaluating Linear Separability

Starting with the investigation of linear separability, we used the performance of SVM Linear
as our basis of evaluation since this method learns a linear high-dimensional hyperplane to
separate the graph representations optimally. The results of the SVM RBF serve as a baseline
that shows how effectively the data will be linear separable after applying the RBF kernel.
Therefore, if both SVM methods achieve similar performance, we can conclude that the graph
representations are already relatively linearly separable, and there is no need for applying an
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Table 6.4.: Overview of accuracy and standard deviation in percent achieved by various methods,
trained and tested on graph representations computed by the best 1-WL+NN and
GNN models.

Method
Dataset

Enzymes Imdb-Binary Mutag Nci1 Proteins Reddit-Binary

1-
W

L+
N

N MLP 48.3 ±8.1 72.4 ±4.1 85.1 ±8.6 83.6 ±4.1 75.2 ±3.9 78.4 ±2.7

SVM Linear 34.4 ±5.5 71.2 ±3.9 86.4 ±8.9 83.4 ±2.1 73.9 ±4.1 77.8 ±2.7

SVM RBF 45.0 ±7.0 72.8 ±4.3 83.2 ±7.5 83.6 ±1.9 75.2 ±4.0 78.3 ±2.4

k-NN 56.3 ±5.8 (k=1) 72.3 ±4.1 (k=11) 86.7 ±7.7 (k=10) 83.9 ±1.8 (k=5) 73.9 ±4.1 (k=19) 83.2 ±2.5 (k=13)

GN
N

MLP 34.4 ±7.0 74.7 ±3.8 84.6 ±8.7 79.9 ±2.2 74.3 ±5.1 86.9 ±3.2

SVM Linear 33.2 ±5.9 73.9 ±4.2 87.4 ±6.8 67.4 ±2.2 74.7 ±4.2 84.2 ±2.8

SVM RBF 35.9 ±6.0 74.1 ±3.9 86.0 ±7.4 73.0 ±1.9 74.6 ±4.6 88.7 ±2.4

k-NN 51.6 ±7.0 (k=1) 74.3 ±4.0 (k=132) 88.3 ±6.5 (k=38) 77.5 ±1.7 (k=2) 74.9 ±4.3 (k=27) 90.8 ±1.8 (k=15)

additional kernel function.
Interestingly, for both GNN and 1-WL+NN models, the linear SVM performed comparably to

the MLP, with the exceptions of Enzymes for the 1-WL+NN model and Nci1 for the GNN
model. In fact, SVM Linear even outperformed the MLP of the GNN model on Mutag, indicating
strong linear separability of the graph representations. Furthermore, since the insights were
similar for both GNN and 1-WL+NN models, we concluded that both methods map their graph
representations in such a way as to facilitate easy linear separation. Additionally, we observed
that the accuracy achieved by SVM RBF is higher than the one of SVM Linear; however, this
difference is negligible and insignificant (except for the Enzymes dataset). This insight, again,
demonstrates how well the graph representations are linear separability.

For a visualization of the decision boundary calculated by SVM Linear, see Figure 6.8. We
used the t-distributed stochastic neighbor embedding (t-SNE) to reduce the dimensions of the
graph representation for visualization purposes. However, note that the t-SNE method distorts
the actual distances between data points, such that these visualizations only aid the imagination
of the actual relation between graph representations.

The insight that the GNN and the 1-WL+NN model compute node representations that, when
pooled into a single graph representation, allow for good linear separability further support our
hypothesis that the extra expressiveness contained in the 1-WL colorings is unnecessary, and
GNNs indeed employ a more efficient encoding, as suggested in the previous section.

Evaluating Clustering Performance

Another interesting property we also want to investigate is how well these graph representations
cluster in their high dimensional space with respect to their class label. To do so, we utilized
the k-NN classifier for different values of k with k ranging from 1 to 200 (except for the Mutag
dataset, which only contains 188 graphs, k was limited to a range of 1 to 150). Our primary
interest was to observe if any range of k values exists where the accuracy consistently remained
high. The existence of such a range indicates the presence of meaningful clusters among all
graph representations. In order to observe such patterns, we plotted the accuracy achieved on
each dataset against the corresponding k values, as illustrated in Figure 6.10.

Before analyzing Figure 6.10, we explain why the existence of such a range indicates good
clustering. Consider the two artificial scenarios depicted in Figure 6.9, where we construct two
balanced datasets with 1000 two-dimensional data points for a binary classification task. The
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Figure 6.8.: Visualization of the decision boundary of each SVM Linear using t-SNE for the
reduction of the dimensionality to two dimensions.

dataset in Figure 6.9a clusters well, meaning it is easy to determine which region in the feature
space corresponds to each class, while the other dataset in Figure 6.9b clusters poorly. By
training a k-NN classifier on both datasets individually for various k, we observe the following:
If the data clusters well, the accuracy achieved by the k-NN classifier will be consistently high
and not fluctuate significantly for different values of k. Conversely, accuracies around 50 % with
strong fluctuations indicate poor clustering.

Upon analyzing Figure 6.10, we can see for all datasets that for some range of k values,
there exists a plateau of the accuracy curve, except for the Enzymes and Nci1 datasets.
These plateaus correspond to the highest accuracy achieved among all k values, indicating that
both graph representations computed by 1-WL+NN and GNN models indeed form meaningful
clusters with respect to their class labels. Furthermore, as the GNN model outperformed the
1-WL+NN model for most k values, we can conclude that the higher expressiveness of the
node representation computed by the 1-WL algorithm is obsolete and the GNN models indeed
compute a more efficient encoding of its nodes, which leads to pooled graph representations
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Figure 6.9.: Impact of clustered data on the performance of the k-NN classifier. Two artificial,
balanced binary classification datasets with 1000 two-dimensional data points are
used. One dataset exhibits good clustering, while the other does not. The k-NN
classifier accuracy, trained on both datasets, is plotted for various k values.

that achieved the same or even better results in terms of clustering. This insight is even more
pronounced in the example of the Reddit-Binary dataset, as here, a significant difference
exists in its clustering behavior compared to the 1-WL+NN models.

In the case of the Enzymes dataset, although there is no such range of values of k observable,
the accuracy curve is very similar for both types of models, indicating that the lack of a distinct
clustering indication may be attributed to the characteristics of the dataset.

The real exception, however, lies in the behavior of the k-NN when applied to the Nci1
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Figure 6.10.: Average classification accuracy achieved on each dataset by replacing the multilayer
perceptron of the best-performing 1-WL+NN and GNN model with a classifier
based on the k-nearest neighbors algorithm. We tested for different values of k.
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dataset. Here, only the graph representations computed by the 1-WL+NN model exhibit strong
clustering performance that remains consistently high across all values of k. In contrast, the
graph representations of the GNN model do not seem to cluster at all, and the maximum
achievable accuracy is significantly lower than the average accuracy achieved by the 1-WL+NN
model representations. We attribute this effect to the 1-WL+NN model’s use of three iterations
of the 1-WL algorithm, compared to just one iteration used by all other models of the other
datasets. Since the Nci1 dataset encodes essential information for solving its respective task
mainly in the structure of its graphs (Liu et al. [2022]), this pattern might only be specific to
this dataset. Moreover, we observed that no other dataset showed better performance of its
1-WL+NN models with an increased number of 1-WL iterations, as evident in Figure 6.1.

In conclusion, our findings indicate that the pooled graph representations computed by both
1-WL+NN and GNN models are highly linearly separable in their high-dimensional space while
also forming meaningful clusters with respect to their class labels. Notably, the GNN models
demonstrated superior clustering performance, providing further support for our hypothesis that
the message-passing layers of a GNN encode essential information without overly emphasizing
expressiveness. This suggests that the GNN models strike a balance between efficient encoding
and required expressiveness depending on their application.

6.5. Combining the 1-WL algorithm with GNNs
As already outlined at the beginning of this chapter, in comparison to all configurations we
tested for 1-WL+NN and GNN models, the best accuracy on all classification datasets was
achieved by a 1-WL+NN model, except for the Imdb-Binary and Reddit-Binary dataset.
What makes this observation so interesting is that both datasets are the only ones lacking
node features, such that we initialize the features of the dataset with an encoding of their node
degree for GNN models tested on these datasets.

This difference raises the question of whether GNN models generally perform better when
their input graphs undergo preprocessing. Specifically, we aim to explore if GNN models achieve
improved performance when their graphs are preprocessed using the 1-WL algorithm for a single
iteration. We will refer to such GNN models as 1-WL:GNN.

This idea seems promising as most of the best-performing 1-WL+NN models also utilize
a single iteration of the 1-WL algorithm as their basis for computation. Further, we know
that a 1-WL:GNN model can already achieve the same accuracy as each 1-WL+NN model by
simply forwarding the preprocessed input graph to the pooling function. However, we hope
that 1-WL:GNN models leverage their message-passing layers to generate an improved node
representation, ultimately leading to enhanced performance in the end.

We conducted the same hyperparameter optimization routines as for the normal GNN models
and listed the classification accuracy achieved by the best-performing configuration of a 1-
WL:GNN model for each dataset in Table 8. We also included the best performances of each
1-WL+NN and GNN models for comparison. However, it is essential to note that due to the
time constraints of this work and the prioritization of hyperparameter optimization for GNN
and 1-WL+NN models, we tested fewer configurations for 1-WL:GNN models. Consequently,
these results should be interpreted with caution.

Upon analyzing the best accuracies achieved by each 1-WL:GNN model in comparison to
the other model types, we observed that its performance is not significantly better than any
of the GNN or 1-WL+NN models. While it does show minor improvements compared to the
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Table 6.5.: Accuracy and standard deviation in percent achieved by the best-performing
1-WL+NN, 1-WL:GNN, and GNN model on each classification dataset.

Model
Dataset

Enzymes Imdb-Binary Mutag Nci1 Proteins Reddit-Binary
1-WL+NN 48.3 ±8.1 72.4 ±4.1 85.1 ±8.6 83.6 ±2.2 75.2 ±3.9 78.4 ±2.7

1-WL:GNN 35.9 ±6.9 72.0 ±4.1 83.9 ±11.0 78.2 ±2.4 74.5 ±4.1 84.3 ±2.8

GNN 34.4 ±7.0 74.7 ±3.8 84.6 ±8.7 79.9 ±2.2 74.3 ±5.1 86.9 ±3.2

GNN models, such as in the Enzymes and Proteins datasets, these improvements are not
significant.

This observation leads to the conclusion that artificially incorporating the expressiveness of
the 1-WL algorithm into the node representations computed by a GNN does not necessarily
improve the performance of GNNs. Moreover, it reinforces our finding that the representations
learned by a GNN tend to emphasize essential aspects rather than computing a fully expressive
representation.

6.6. Impact of the Size of Datasets on the Performance of
1-WL+NN

After learning about the expressiveness of the 1-WL algorithm in terms of the number of unique
colors its uses in Figure 6.3, compared with the fact that this number is increasingly larger for
larger datasets as outlined in Table B.7 in the Appendix, the question arises: Do 1-WL+NN
models scale as effectively as GNN models in terms of performance as the dataset size increases?
To investigate this hypothesis, we selected two regression datasets, Alchemy and Zinc, and
utilized two fixed splits of different sizes for each dataset. These splits allowed us to test
1-WL+NN models on both the entire dataset and a smaller subset representing less than 5 % of
the total data, enabling us to explore potential performance differences. An overview of the
results is provided in Table 6.2 at the beginning of this section.

Similar to the classification datasets, we conducted a hyperparameter optimization for both
1-WL+NN and GNN models. The primary question of interest here was whether we would
observe performance differences between the various splits for each dataset and if there would
be discrepancies between the two types of models.

Upon analyzing these results, the first notable observation is that the best performances were
achieved entirely by GNN models, specifically the GIN:Sum model. However, in comparison to
the GINE-ε model by Morris et al. [2020], which we included as a reference to showcase the
performance achieved by a different GNN model than ours, both our GNN and 1-WL+NN models
demonstrated inferior performance. We conjecture that this discrepancy can be attributed to
GINE-ε utilizing the edge features of its input graph in its computation, while our models do
not.

Regarding the differences in performance between the various splits for each dataset, the
evidence is not straightforward. While 1-WL+NN models performed better on the smaller split
Alchemy(10k) than the full split, GNN models demonstrated a similar margin of improvement.
Moreover, we observed the opposite phenomenon on Zinc, with 1-WL+NN and GNN models
achieving better performance on the larger Zinc split than the smaller Zinc(10k) split.
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One reason such differences are not evident for 1-WL+NN models may be because the best-
performing 1-WL+NN configurations still utilized only a limited number of 1-WL iterations.
For instance, the models for Alchemy employed only a single iteration of the 1-WL algorithm
for both splits, resulting in a constant number of 70 unique colors. Similarly, the best model for
Zinc(10k) used two iterations, leading to 9,818 unique colors, while the best model on Zinc
utilized three iterations and encountered 290,473 unique colors. Both numbers are significantly
smaller than the number of unique colors used by a higher number of iterations. See Table B.7
for a summary of the number of unique colors for different numbers of 1-WL iterations.

Furthermore, the variations in the splits might also have contributed to the observed differences
between the datasets. In particular, the number of unique colors after a single 1-WL iteration
differs for Zinc and Zinc(10k), whereas it remains the same for both splits of Alchemy.

Further, it is important to note that due to time constraints and the immense time
required, especially for training models on the entire Alchemy or Zinc dataset, the number of
configurations we tested is relatively low compared to Zinc(10k) and Alchemy(10k). For a
complete overview of the number of runs for each dataset and each model, refer to Table B.6 in
the Appendix.

Another aspect to consider is that, unlike all other results, the Alchemy and Zinc datasets
are regression tasks, which might not be as suitable for 1-WL+NN models due to the discrete
nature of the 1-WL algorithm and the resulting discrete node representations. In this context,
the ability of GNN models to compute continuous node representations may be better suited
for regression tasks. However, it is important to note that the difference between GNN and
1-WL+NN models in Table 6.2 is not as substantial as this aspect might initially indicate.

In conclusion, the impact of the size of a dataset on the performance of 1-WL+NN models
must be investigated further. In detail, future research needs to investigate datasets not only of
large size but also datasets that consist of large graphs, such that the number of unique colors
is already relatively high even after a single iteration of the 1-WL algorithm. A good example of
such a dataset is the Reddit-Binary dataset, where the number of unique colors after a single
iteration of the 1-WL algorithm is 566 due to the high number of nodes on average per graph.
For this dataset, a performance gap between 1-WL+NN and GNN models can be observed,
with the best GNN model achieving up to an 8 % higher accuracy than the best 1-WL+NN
model (refer to Table 6.2). However, it is also essential to acknowledge that the reasons for this
performance gap are not solely attributable to the dataset’s size, as other factors are at play, as
discussed in the preceding sections.
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7. Discusssion

This concluding chapter discusses and summarizes the key findings and conclusions from our
empirical investigation by addressing our initial research questions. Moreover, it examines the
use case of the 1-WL+NN framework beyond the scope of this work and outlines potential areas
for future research. Finally, the thesis concludes with some final remarks.

7.1. Insights into the Representations learned by GNNs
In the following, we answer our research questions Q1 to Q4.

Q1 Can 1-WL+NN models achieve comparable performance to GNN models empirically?
A1 Yes, the results on the classification datasets indicate that 1-WL+NN models achieved
comparable performance and even outperformed GNN models on 4 out of 6 datasets. However,
the experiments on the regression datasets show a performance discrepancy between GNN and
1-WL+NN models, suggesting that 1-WL+NN models might be more suitable for classification
tasks than regression tasks due to the discrete nature of the 1-WL algorithm.

Q2 Are there observable differences in the learning behavior between 1-WL+NN and GNN
models?
A2 Yes, 1-WL+NN models tend to exhibit more pronounced overfitting than GNN models.
This behavior is primarily due to the highly expressive nature of the 1-WL algorithm and the
intricate colorings it computes, which can lead to memorizing specific patterns in the data. To
ensure good generality of 1-WL+NN models, it is often necessary to limit the expressiveness of
the 1-WL algorithm in most applications. In contrast, GNN models do not demonstrate severe
overfitting issues, primarily because they map their node representations into a continuous,
contained space. To put this into perspective, the colorings computed by a 1-WL+NN model
utilize many distinct integers whose numerical distances to one another are huge compared to
the colorings produced by GNN models. This difference in representation spaces contributes to
the contrasting overfitting behavior observed between the two model types.

Q3 To what extent does the expressiveness of 1-WL+NN models contribute to their empirical
performance, and do GNN models leverage their theoretical ability to be equally expressive?
A3 In the majority of cases, 1-WL+NN models do not fully utilize the expressiveness of
the 1-WL algorithm to achieve comparable performance. Most best-performing 1-WL+NN
models use only a single iteration of the 1-WL algorithm, effectively equivalent to a node degree
encoding. Interestingly, GNN models also mainly rely on this information, computing node
representations similar to those produced by a single iteration of the 1-WL algorithm. However,
there are exceptions where utilizing an increased number of 1-WL iterations for a 1-WL+NN
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model improves its performance, demonstrating the potential of the expressiveness of 1-WL+NN
models. In these exceptional cases, GNN models also show better approximation capability of
the coloring computed by the 1-WL algorithm Additionally, we noticed that this approximation
is very robust, meaning modifying the distance between node representations artificially yields
the same approximation performance. These observations lead us to conclude that GNN models
strike a balance between efficient encoding and required expressiveness depending on the
application. They are able to capture the essential information needed for the task without
fully leveraging the complete expressiveness of the 1-WL algorithm in most cases.

Q4 Is there a substantial difference in the graph representations computed by each model
type?
A4 The graph representations derived from pooling the node representations of 1-WL+NN
and GNN models share many similarities. Both graph representations demonstrate good
linear separability and clustering in their high-dimensional space, indicating that the full
expressiveness of the 1-WL algorithm is not always necessary, as GNNs achieve similar results
with more efficient encoding. Moreover, GNN models even perform better on most datasets
regarding linear separability and clustering, indicating that the information encoded in their
node representations is more efficiently captured, even though it may not be as expressive as
the 1-WL coloring.

7.2. The 1-WL+NN Framework beyond the Scope of this Work
Throughout this work, we have extensively explored the similarities between the 1-WL+NN
and GNN frameworks, establishing their theoretical equivalence in terms of computability and
uncovering various shared characteristics. As a result, the 1-WL+NN framework emerges as a
valuable tool for investigating GNN models and datasets and even offers certain advantages
over GNNs.

One significant advantage lies in the ease of deployment. Configuring a 1-WL+NN model
involves only selecting a suitable encoding function and configuring the size of its multilayer
perceptron. Additionally, the colors computed by the 1-WL algorithm remain fixed and only
need to be calculated once during the initialization of the model. Consequently, the training
process of a 1-WL+NN model mainly revolves around optimizing the multilayer perceptron,
making it notably faster than training GNN models. For instance, in our experiments training
a GIN:Sum model on the Zinc dataset took nearly 13 hours, while our best 1-WL+NN model
completed training in under 3 hours.

However, despite these advantages, it is crucial to acknowledge that 1-WL+NN models are
restricted in their real-world applicability. The requirement to initialize the 1-WL algorithm
with unique colors for all local substructures the model will encounter before training makes
the 1-WL+NN framework more suitable for research purposes and tasks with a known set of
input graphs. In contrast, GNNs exhibit greater versatility, proving effective on any input graph
and thus better suited for real-world applications.

In conclusion, the 1-WL+NN framework can be utilized as a research tool, offering valuable
insights into GNN behavior and performance evaluation for datasets. Their advantages make
them well-suited for research and understanding the theoretical underpinnings of GNNs.

58



7.3. Recommendations for Future Research
This section highlights potential areas for further investigation that emerged during our study,
offering valuable opportunities for future research.

The impact of the 1-WL algorithm as a tool for preprocessing data for GNN models, as
discussed and investigated in Section 6.5, needs further research. While initial results did not
show significant improvements, they at least demonstrated comparable performance to GNNs.
Investigating the reasons behind this phenomenon and conducting additional hyperparameter
optimization runs for 1-WL:GNN models will shed light on the potential advantages and
limitations of incorporating 1-WL as a tool for preprocessing data of GNN models.

The observed discrepancies in performance on the regression datasets, as discussed in
Section 6.6, prompt us to investigate whether these differences are inherent to the nature
of the regression task or influenced by the dataset size. To address this, conducting further
experiments on smaller-scale regression datasets and larger-scale classification datasets would
yield valuable insights into the scalability and generalizability of both 1-WL+NN and GNN
models.

One such large-scale classification dataset that can be considered is the MalNet dataset
curated by Freitas et al. [2022]. It offers two fixed splits: one utilizes the entire dataset,
consisting of 1.2 million samples, while the smaller split, called MalNet(tiny), consists of
only 5 000 samples. Utilizing this dataset would enable us to explore the impact of dataset size
on the performance of both 1-WL+NN and GNN models, providing a deeper understanding of
their behavior and capabilities across different data scales.

7.4. Conclusion
In conclusion, this thesis has introduced the novel 1-WL+NN framework, establishing its
theoretical equivalence to GNNs in terms of computability. The extensive investigation using
the 1-WL+NN framework has provided valuable insights into the behavior of GNN models.

By leveraging the 1-WL+NN framework as a tool for understanding GNNs, we have discovered
that GNN models exhibit greater efficiency in generalization and encoding. In detail, GNNs
effectively capture the essential structural information required to solve specific tasks without
fully leveraging the complete expressiveness of the 1-WL algorithm.

These findings not only enhance our understanding of graph neural networks but also open
new possibilities for further advancements. The 1-WL+NN framework offers researchers a
valuable tool for gaining deeper insights into GNN behavior and performance, leading to novel
approaches and improvements in graph-based machine learning.
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A. Appendix Part I

A.1. Graph Attention Network
The Graph Attention Network (GAT) developed by [46] is a distinctive GNN architecture that
features a unique attention mechanism inspired by natural language processing, specifically
from the work [6]. This attention mechanism allows the model to focus on relevant parts of
the input data during message-passing, enabling the GAT to learn the importance of each
neighboring node for updating a node’s representation.

Definition 25. The message-passing layers of the GAT architecture are defined as follows:

f (t)
merge = σ(αvv · f (t)(v) + f (t)

agg), and f (t)
agg =

∑
u∈N (v)

αvu ·W (t) · f (t−1)(u),

with the attention coefficient αvv computed as follows:

αvu =
exp

(
LeakyReLU

(
a⃗T · concat[W (t)f (t−1)(v), W (t)f (t−1)(u)]

))∑
k∈N (v)∪{v}

exp
(
LeakyReLU

(
a⃗T · concat[W (t)f (t−1)(v), W (t)f (t−1)(k)]

)) ,
where a⃗ is a learnable vector, W (t) a learnable matrix, and σ a non-linear activation function.
Further, the LeakyReLU function is defined as follows:

LeakyReLU(x) :=
{
x, if x ≥ 0
m · x, else

,

where m is a learnable parameter and is referred to as “negative-slop”. This value is in the
context of the GAT usually initialized to m := 0.2.
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B. Appendix Part II

B.1. Definition of the Normalized Shannon-Index
We used the following definition of the Normalized Shannon-Index.

Definition 26 (Normalized Shannon-Index). The metric is computed as follows:

− 1
log2(|C|) ·

∑
i∈C

ni

n
· log2(ni

n
) (B.1.1)

where n is the total number of samples of the dataset, C is the set of all classes, and ni is the
number of samples of the class i ∈ C.

As an example, for the dataset Proteins the variables are set to be the following: C = {0, 1}
with n0 = 663 and n1 = 450, so that n = 1113, yielding a rounded value of 0.973.
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B.2. Theoretical Maximum Accuracy Analysis

Table B.1.: An overview of the maximum theoretical classification accuracy achievable for each
dataset based on the number of 1-WL iterations in percent. A hyphen “-” indicates
that the maximum accuracy has converged with fewer iterations, implying that
further iterations do not improve the accuracy. “Oom” denotes out of memory
error.

Datasets
Iterations of the 1-WL algorithm
0 1 2 3 4 5

Bi
oi

nf
or

m
at

ic
s DD 1.00 - - - - -

ENZYMES 0.81 1.00 - - - -
KKI 1.00 - - - - -
OHSU 1.00 - - - - -
Peking_1 1.00 - - - - -
PROTEINS 0.92 1.00 - - - -

Sm
al

lm
ol

ec
ul

es

AIDS 1.00 1.00 - - - -
BZR 0.96 0.99 1.00 - - -
COX2 0.93 0.96 0.99 1.00 - -
DHFR 0.92 0.95 1.00 1.00 - -
FRANKENSTEIN 0.63 0.77 0.88 0.89 0.89 -
MUTAG 0.93 0.96 0.99 1.00 - -
NCI1 0.91 1.00 1.00 1.00 - -
NCI109 0.92 1.00 1.00 1.00 - -
PTC_MR 0.92 0.98 0.99 - - -

So
ci

al
ne

tw
or

ks COLLAB 0.61 0.98 - - - -
IMDB-BINARY 0.61 0.89 - - - -
IMDB-MULTI 0.44 0.63 - - - -
REDDIT-BINARY 0.84 1.00 - - - -
REDDIT-MULTI-5K 0.55 1.00 - - - -
REDDIT-MULTI-12K 0.36 Oom Oom Oom Oom Oom
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B.3. Hyperparameter Configuration and Optimization
B.3.1. Overview of Hyperparameters
Overview of Hyperparameters: 1-WL+NN on the Classification Datasets

Table B.2.: Hyperparameters for 1-WL+NN models for the classification datasets. Highlighting
the best-performing configuration when multiple options exist for a parameter.

Hyperparameter
Dataset

Enzymes Imdb-Binary Mutag
Batch Size 32 32 32
Learning Rate X ∼ U(0.0001, 0.1) X ∼ U(0.0001, 0.1) X ∼ U(0.0001, 0.1)
Max Epochs 200 200 200
Optimizer Adam Adam Adam
Scheduler ReduceLROnPlateau ReduceLROnPlateau ReduceLROnPlateau
Number of 1-WL iterations {1, 2, 3, 4} {1, 2, 3, 4} {1, 2, 3, 4}
Use 1-WL-Convergence False False False
MLP Activation Function ReLU ReLU ReLU
MLP Normalization BatchNorm BatchNorm BatchNorm
MLP Number of Layers {2,3, 4, 5} {2,3, 4, 5} {2,3, 4, 5}
MLP Dropout X ∼ U(0, 0.2) X ∼ U(0, 0.2) X ∼ U(0, 0.2)
Embedding Dimension {None, 16, 32, 64,128} {None,16, 32, 64, 128} {None, 16,32, 64, 128}
Pooling function {Max,Mean,Sum} {Max,Mean, Sum} {Max,Mean,Sum}

Hyperparameter
Dataset

NCI1 Proteins Reddit-Binary
Batch Size 33 32 32
Learning Rate X ∼ U(0.0001, 0.1) X ∼ U(0.0001, 0.1) X ∼ U(0.0001, 0.1)
Max Epochs 200 200 200
Optimizer Adam Adam Adam
Scheduler ReduceLROnPlateau ReduceLROnPlateau ReduceLROnPlateau
Number of 1-WL iterations {1, 2,3, 4} {1, 2, 3, 4} {1, 2, 3, 4}
Use 1-WL-Convergence False False False
MLP Activation Function ReLU ReLU ReLU
MLP Normalization BatchNorm BatchNorm BatchNorm
MLP Number of Layers {2, 3, 4, 5} {2,3, 4, 5} {2,3, 4, 5}
MLP Dropout X ∼ U(0, 0.2) X ∼ U(0, 0.2) X ∼ U(0, 0.2)
Embedding Dimension {None, 16,32, 64, 128} {None, 16, 32,64, 128} {None, 16, 32, 64,128}
Pooling function {Max,Mean,Sum} {Max,Mean, Sum} {Max,Mean,Sum}
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Overview of Hyperparameters: GNN on the Classification Datasets

Table B.3.: Hyperparameters for GNN models for the classification datasets. Highlighting the
best-performing configuration when multiple options exist for a parameter.

Hyperparameter
Dataset

Enzymes Imdb-Binary Mutag
Batch Size 32 32 32
Learning Rate X ∼ U(0.0001, 0.1) X ∼ U(0.0001, 0.1) X ∼ U(0.0001, 0.1)
Max Epochs 200 200 200
Optimizer Adam Adam Adam
Scheduler ReduceLROnPlateau ReduceLROnPlateau ReduceLROnPlateau
GNN Architecture {GAT,GCN,GIN} {GAT,GCN,GIN} {GAT,GCN,GIN}
GNN Activation Function ReLU ReLU ReLU
GNN Dropout X ∼ U(0, 0.2) X ∼ U(0, 0.2) X ∼ U(0, 0.2)
GNN Hidden Dimension {16, 32,64, 128} {16, 32,64, 128} {16, 32, 64, 128}
GNN Jumping-Knowledge cat cat cat
GNN Number of Layers 5 5 5
MLP Activation Function ReLU ReLU ReLU
MLP Normalization BatchNorm BatchNorm BatchNorm
MLP Number of Layers {2,3, 4, 5} {2, 3, 4,5} {2,3, 4, 5}
MLP Dropout X ∼ U(0, 0.2) X ∼ U(0, 0.2) X ∼ U(0, 0.2)
Pooling function {Max,Mean,Sum} {Max,Mean,Sum} {Max,Mean,Sum}

Hyperparameter
Dataset

NCI1 Proteins Reddit-Binary
Batch Size {33,129} 32 32
Learning Rate X ∼ U(0.0001, 0.1) X ∼ U(0.0001, 0.1) X ∼ U(0.0001, 0.1)
Max Epochs 200 200 200
Optimizer Adam Adam Adam
Scheduler ReduceLROnPlateau ReduceLROnPlateau ReduceLROnPlateau
GNN Architecture {GAT,GCN,GIN} {GAT,GCN,GIN} {GAT,GCN,GIN}
GNN Activation Function ReLU ReLU ReLU
GNN Dropout X ∼ U(0, 0.2) X ∼ U(0, 0.2) X ∼ U(0, 0.2)
GNN Hidden Dimension {16, 32, 64,128} {16, 32, 64,128} {16, 32, 64, 128}
GNN Jumping-Knowledge cat cat cat
GNN Number of Layers 5 5 5
MLP Activation Function ReLU ReLU ReLU
MLP Normalization BatchNorm BatchNorm BatchNorm
MLP Number of Layers {2, 3,4, 5} {2, 3,4, 5} {2, 3, 4, 5}
MLP Dropout X ∼ U(0, 0.2) X ∼ U(0, 0.2) X ∼ U(0, 0.2)
Pooling function {Max,Mean,Sum} {Max,Mean,Sum} {Max,Mean,Sum}
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Overview of Hyperparameters: 1-WL+NN on the Regression Datasets

Table B.4.: Hyperparameters for 1-WL+NN models for the regression datasets. Highlighting
the best-performing configuration when multiple options exist for a parameter.

Hyperparameter
Dataset

Alchemy Alchemy(10k) Zinc Zinc(10k)
Batch Size 25 25 25 25
Learning Rate 0.001 0.001 0.001 0.001
Max Epochs 1000 1000 1000 1000
Optimizer Adam Adam Adam Adam
Scheduler ReduceLROnPlateau ReduceLROnPlateau ReduceLROnPlateau ReduceLROnPlateau
Number of 1-WL iterations {1, 2, 3} {1, 2, 3, 4} {1, 2,3} {1,2, 3, 4}
Use 1-WL-Convergence False False False False
MLP Activation Function ReLU ReLU ReLU ReLU
MLP Normalization BatchNorm BatchNorm BatchNorm BatchNorm
MLP Number of Layers {2,3, 4, 5} {2, 3, 4, 5, 6,7} {2,3, 4, 5} {2,3, 4, 5}
MLP Dropout X ∼ U(0, 0.2) X ∼ U(0, 0.2) X ∼ U(0, 0.2) X ∼ U(0, 0.2)
Embedding Dimension {16,32, 64, 128, 256} {16, 32, 64, 128,256} {16, 32, 64, 128,256} {16, 32, 64, 128,256}
Pooling function {Max,Mean,Sum} {Max,Mean,Sum} {Max,Mean, Sum} {Max,Mean,Sum}

Overview of Hyperparameters: GNN on the Regression Datasets

Table B.5.: Hyperparameters for GNN models for the regression datasets. Highlighting the
best-performing configuration when multiple options exist for a parameter.

Hyperparameter
Dataset

Alchemy Alchemy(10k) Zinc Zinc(10k)
Batch Size 25 25 25 25
Learning Rate 0.001 0.001 0.001 0.001
Max Epochs 1000 1000 1000 1000
Optimizer Adam Adam Adam Adam
Scheduler ReduceLROnPlateau ReduceLROnPlateau ReduceLROnPlateau ReduceLROnPlateau
GNN Architecture GIN GIN GIN GIN
GNN Activation Function ReLU ReLU ReLU ReLU
GNN Dropout 0.0 0.0 0.0 0.0
GNN Hidden Dimension 256 256 256 256
GNN Jumping-Knowledge cat cat cat cat
GNN Number of Layers 5 5 5 5
MLP Activation Function ReLU ReLU ReLU ReLU
MLP Normalization BatchNorm BatchNorm BatchNorm BatchNorm
MLP Number of Layers 4 4 4 4
MLP Dropout 0.0 0.0 0.0 0.0
Pooling function {Max,Mean,Sum} {Max,Mean,Sum} {Max,Mean,Sum} {Max,Mean,Sum}

B.3.2. Impact of each Hyperparameter for 1-WL+NN
In this section, we present the results of our hyperparameter optimization for the 1-WL+NN
framework on each classification dataset. We plot a random subset of the tested configurations
where each line in the visualization represents a single configuration and is color-coded based
on its accuracy relative to the other plotted configurations. Bright yellow lines indicate
configurations that performed among the best, while dark purple lines represent configurations
with the worst performance. The color coding gradually transitions between these two color
endpoints, allowing for a clear visual representation of the performance spectrum. Note that a
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value of −1 for the number of iterations of the 1-WL algorithm indicates the use of the standard
version of the algorithm.

1-WL+NN Configurations on the ENZYMES Dataset

Figure B.1.: Overview of the effects of each hyperparameter on the accuracy of the corresponding
configured 1-WL+NN model for the Enzymes dataset.

1-WL+NN Configurations on the IMDB-BINARY Dataset

Figure B.2.: Overview of the effects of each hyperparameter on the accuracy of the corresponding
configured 1-WL+NN model for the Imdb-Binary dataset.
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1-WL+NN Configurations on the MUTAG Dataset

Figure B.3.: Overview of the effects of each hyperparameter on the accuracy of the corresponding
configured 1-WL+NN model for the Mutag dataset.

1-WL+NN Configurations on the NCI1 Dataset

Figure B.4.: Overview of the effects of each hyperparameter on the accuracy of the corresponding
configured 1-WL+NN model for the Nci1 dataset.
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1-WL+NN Configurations on the PROTEINS Dataset

Figure B.5.: Overview of the effects of each hyperparameter on the accuracy of the corresponding
configured 1-WL+NN model for the Proteins dataset.

1-WL+NN Configurations on the REDDIT-BINARY Dataset

Figure B.6.: Overview of the effects of each hyperparameter on the accuracy of the corresponding
configured 1-WL+NN model for the Reddit-Binary dataset.
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B.3.3. Impact of each Hyperparameter for GNNs
In this section, we present the results of our hyperparameter optimization for the GNN framework
on each classification dataset. We will use the same visualization explained and utilized in the
previous section, customized to the hyperparameters of the GNN models.

GNN Configurations on the ENZYMES Dataset

Figure B.7.: Overview of the effects of each hyperparameter on the accuracy of the corresponding
configured GNN model for the Enzymes dataset.

GNN Configurations on the IMDB-BINARY Dataset

Figure B.8.: Overview of the effects of each hyperparameter on the accuracy of the corresponding
configured GNN model for the Imdb-Binary dataset.
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GNN Configurations on the MUTAG Dataset

Figure B.9.: Overview of the effects of each hyperparameter on the accuracy of the corresponding
configured GNN model for the Mutag dataset.

GNN Configurations on the NCI1 Dataset

Figure B.10.: Overview of the effects of each hyperparameter on the accuracy of the
corresponding configured GNN model for the Nci1 dataset.
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GNN Configurations on the PROTEINS Dataset

Figure B.11.: Overview of the effects of each hyperparameter on the accuracy of the
corresponding configured GNN model for the Proteins dataset.

GNN Configurations on the REDDIT-BINARY Dataset

Figure B.12.: Overview of the effects of each hyperparameter on the accuracy of the
corresponding configured GNN model for the Reddit-Binary dataset.
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B.3.4. Overview of the Number of Configurations

Table B.6.: Overview of the number of different configurations tested for each model type and
each dataset.

Model
Dataset

Classification Regression

Enzymes Imdb-Binary Mutag Nci1 Proteins Reddit-Binary Alchemy Alchemy(10k) Zinc Zinc(10k)

1-
W

L+
N

N

Max 86 70 150 26 35 40 0 0 0 0
Mean 76 67 120 19 27 40 0 0 0 0
Sum 85 67 130 14 29 41 0 0 0 0

Embedding-Max 338 282 290 79 245 45 3 95 6 33
Embedding-Mean 288 271 299 109 216 50 6 77 8 24
Embedding-Sum 296 293 302 79 215 48 5 273 7 18

G
ra

ph
N

eu
ra

lN
et

wo
rk

s GAT:Max 17 17 36 11 10 6 0 0 0 0
GAT:Mean 28 15 29 12 10 6 0 0 0 0
GAT:Sum 26 17 37 15 16 6 0 0 0 0

GCN:Max 31 22 37 17 10 9 0 0 0 0
GCN:Mean 19 26 26 19 16 5 0 0 0 0
GCN:Sum 30 29 27 17 14 10 0 0 0 0

GIN:Max 21 17 28 25 20 3 1 1 1 1
GIN:Mean 31 9 31 18 26 9 2 2 2 2
GIN:Sum 26 9 36 20 11 9 1 1 1 1

1-
W

L:
GN

N

GAT:Max 2 4 1 9 4 2 0 0 0 0
GAT:Mean 3 4 6 6 7 4 0 0 0 0
GAT:Sum 5 5 6 9 4 4 0 0 0 0

GCN:Max 2 6 4 12 6 3 0 0 0 0
GCN:Mean 3 5 3 10 8 2 0 0 0 0
GCN:Sum 6 2 3 5 5 3 0 0 0 0

GIN:Max 3 4 4 9 7 5 0 0 0 0
GIN:Mean 2 6 2 10 7 3 0 0 0 0
GIN:Sum 4 2 4 11 4 4 0 0 0 0

B.4. GNN Approximation Evaluation
B.4.1. Unique Color Count utilized by 1-WL Algorithm

Table B.7.: Overview of the number of unique colors in the colorings computed by the 1-WL
algorithm when applied to each dataset. Specifically, we specified the number of
iterations of the 1-WL algorithm. Additionally, the “# Nodes” column showcases
the maximum number of unique colors that can appear in the colorings.

Dataset
Number of 1-WL Iterations

0 1 2 3 4 5 6 7 8 9 10 # Nodes

C
la

ss
ifi

ca
tio

n Enzymes 2 231 10 416 15 208 16 029 16 450 16 722 16 895 17 026 17 130 17 204 195 80
Imdb-Binary 1 65 2 931 3 595 3 595 3 595 3 595 3 595 3 595 3 595 3 595 19 773
Mutag 2 33 174 572 1 197 1 766 2 167 2 403 2 511 2 560 2 579 3 371
Nci1 2 292 4 058 22 948 44 508 58 948 68 632 75 754 81 263 85 590 88 968 122 747
Proteins 2 297 20 962 35 676 37 940 38 653 38 926 39 064 39 141 39 180 39 203 43 471
Reddit-Binary 1 566 71 893 244 529 317 728 333 258 335 961 336 412 336 490 336 506 336 507 859 254

R
eg

re
ss

. Alchemy 2 70 4 782 164 224 620 332 995 264 1 166 951 1 216 094 1 225 861 1 227 632 1 227 904 2 046 329
Alchemy(10k) 2 70 2 764 33 903 76 822 98 394 104 687 105 907 106 109 106 149 106 166 121 422
Zinc 2 773 288 74 290 473 1 000 917 1 977 437 2 921 087 3 690 341 4 270 959 4 681 881 4 945 363 5 775 257
Zinc(10k) 2 392 9 818 61 198 132 862 185 699 216 210 233 484 242 866 247 688 249 971 278 179
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GNN Approximation Performance on the ENZYMES Dataset
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Figure B.13.: Visualizing the performance of the best performing GNN on the Enzymes dataset
in approximating node colors computed by the 1-WL algorithm. The ten graphs
shown are randomly sampled from the GNN’s test set. The average error for the
entire test set is 0.49 ± 0.3.

78



GNN Approximation Performance on the IMDB-BINARY Dataset
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Figure B.14.: Visualizing the performance of the best performing GNN on the Imdb-Binary
dataset in approximating node colors computed by the 1-WL algorithm. The ten
graphs shown are randomly sampled from the GNN’s test set. The average error
for the entire test set is 0.14 ± 0.15.
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GNN Approximation Performance on the MUTAG Dataset
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Figure B.15.: Visualizing the performance of the best performing GNN on the Mutag dataset
in approximating node colors computed by the 1-WL algorithm. The ten graphs
shown are randomly sampled from the GNN’s test set. The average error for the
entire test set is 0.42 ± 0.29.
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GNN Approximation Performance on the NCI1 Dataset
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Figure B.16.: Visualizing the performance of the best performing GNN on the Nci1 dataset
in approximating node colors computed by the 1-WL algorithm. The ten graphs
shown are randomly sampled from the GNN’s test set. The average error for the
entire test set is 0.42 ± 0.22.
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GNN Approximation Performance for three 1-WL Iterations on the NCI1 Dataset
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Figure B.17.: Visualizing the performance of the best performing GNN on the Nci1 dataset
in approximating node colors computed by the 1-WL algorithm. The ten graphs
shown are randomly sampled from the GNN’s test set. The average error for the
entire test set is 0.50 ± 0.24.
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GNN Approximation Performance on the PROTEINS Dataset
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Figure B.18.: Visualizing the performance of the best performing GNN on the Proteins dataset
in approximating node colors computed by the 1-WL algorithm. The ten graphs
shown are randomly sampled from the GNN’s test set. The average error for the
entire test set is 0.49 ± 0.26.
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GNN Approximation Performance on the REDDIT-BINARY Dataset

Figure B.19.: Visualizing the performance of the best performing GNN on the Reddit-Binary
dataset in approximating node colors computed by the 1-WL algorithm. The ten
graphs shown are randomly sampled from the GNN’s test set. The average error
for the entire test set is 0.48 ± 0.32.
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